Fraction Collector

Fraction Collector

Almost unlimited flexibility – opens new possibilities in chromatography and multiple stream sampling.

OMNICOLL Fraction Collector and Sampler

  • Collects fractions in any racks or recipients of your choice
  • Collects unlimited number of fractions
  • The electronics and moving parts are placed above the tubes
     – No damage due to spilling
     – Can be placed in a cold bath or any other thermo-stabilized container
  • Fractionation according to time (0.1–999.9 min and 1–9999 min) or volume (0.05–500 ml or 0.1 to 30 l)
  • Solvent resistant construction
  • Pause (from 0 to 999.9 min and 1 to 9999 min) or rinsing can be programmed between fractions
  • Up to 20 fractions simultaneously; multi-channel operation (optional)

Customization possibilities of OMNICOLL fraction collector and sampler

Types of recipients:

OMNICOLL fraction collector can handle nearly all kinds of sampling tubes and laboratory sampling racks or recipients (drops to liters) available on the market.

  • Micro titre plates, vials, titer tubes, test tubes, Nalgene lab bottles, larger volume bottles, beakers, flasks, etc. can be used with the fraction collector.
  • No special sampling tubes or test tube racks are needed to collect the fractions.

Single stream or multi-stream collection:

  • Single stream
  • Simultaneous multi-stream fractions of up to 20
OMNICOLL single channel collector   OMNICOLL 4-stream fraction collection   OMNICOLL 6-channel fraction collector
OMNICOLL single channel fraction collection with LAMBDA peristaltic pump   OMNICOLL multi-stream for 4 free flowing streams in 50 ml Nalgene plastic tubes for lab   OMNICOLL 6-channel with third-party multichannel pump on 96-well plates

Example configurations of single channel and multichannel fraction collector could be viewed at 

Multichannel configuration with adjustable tube guides Example of customized multi-stream fraction collector LAMBDA OMNICOLL

Highly flexible control:

  • Fraction collection or liquid sampling based on volume / time / drop count / controlled by an external signal.
  • Easy to program and handle.
  • Unlimited number of fraction collection

Easy extension of tube capacity by additional supports:

The tube capacity of the LAMBDA OMNICOLL fraction collector and sampler can easily be increased by adding rack supports. Virtually any number of such capacity extensions can be added.

Extended capacity of 12-channel collector with 250 ml bottles: 2 times (= 72 fractions) Extended 30 mm tube rack capacity of single channel fraction collector: 3 times (= 288 fractions)
 OMNICOLL 12-channel collector with 2 additional supports to collect 72 fractions in 250 ml bottles OMNICOLL single channel fraction collector 3 times extended, for 288 fractions on 30 mm tube racks


Features of the OMNICOLL fraction collector

  • The only fraction collector which can be easily programmed for any rack or recipients of your choice
  • All electronic and mechanical components have been miniaturised and placed in one moving part, which is placed above the fractions. Therefore, there is no danger of spilling.
  • The lower part of the fraction collector can be placed into a cold bath, ice bath or any other thermo-stabilized container.
  • Modern microprocessor controlled system using several optical sensors allows for easy programming of the tube positions.
  • Fraction collection according to time or volume
  • Fraction collection in lines or meander like (zigzag)
  • pause (from 0.1 to 999.9 min and 1 to 9999 min) can be programmed between fractions. Thus, the OMNICOLL fraction collector can be used for taking (single or multiple) samples, e.g. during fermentation processes, cell cultures and other biological or chemical processes.
  • The pause function can be used also for an automatic start-up of the fraction collection.
  • Washing of the tubing (line washing) between samples is possible, since the number of fractions in a series can be chosen. 
  • Auto-stop function switches off the fraction collector and the fractionation after a selected rack or at the end of the range
  • Pump flow stop function avoids spilling between two consecutive fractions.
  • Only the liquid transferring tubing is moved instead of the tubes, this requires much less energy and allows the fraction collector to be miniaturized. Additionally, the tubes are easily accessible from all sides.
  • The lower part of the fraction collector can be used for carrying or storage of fractions. A new plastic fixing mat keeps the racks or recipients in position.
  • Several lower parts can be combined to increase the fraction collecting capacity of the fraction collector.
  • Highest user safety has been attained by supplying the OMNICOLL fraction collector with a low voltage plug-in power supply. This allows also an easy field application of the fraction collector (battery operation possible).
  • Solid metal construction makes the OMNICOLL fraction collector insensitive to solvents.
  • Can be easily disassembled and requires only little storage space
  • Low-maintenance construction 
  • Competitive price 
  • Remote control allows sampling after reception of an external signal (such as an alarm). In this way, it is possible to obtain important samples during long processes running even during the absence of a supervisor.
  • Drop counter, inert valve, RS-232 interface, TTL signal based collection and other accessories are available as an option 
Type: LAMBDA OMNICOLL – microprocessor-controlled programmable fraction collector – sampler
Collection mode: Linear (line), meander (zigzag) or row collection
Normal modus:
Time: 0.1 to 999.9 minutes (16.67 hours) in 0.1 min steps or 1 to 9999 minutes (166.7 hours) in 1 min steps
Volume: 0.01 to 500 ml or 0.6 to 30 litres (external counts using LAMBDA peristaltic pump)
High modus: Same as Normal modus, but with a pause between fractions (from 0.1 to 999.9 minutes or 1 to 9999 minutes)
Remote control:
Normal modus: Collector takes a single fraction after an external voltage pulse of 3-12 V (or 12-30 V with a 3300 ohm resistor)
High modus: Collector takes a 1 to 999 fractions after a single external voltage pulse of 3-12 V (or 12-30 V with a 3300 ohm resistor)
Capacity: Any tube rack or container type with a surface smaller than 45 x 31cm
Standard racks supplied: 360 tubes of 12-13 mm diameter; 240 tubes of 16 mm diameter; 160 tubes of 20 mm diameter; 96 tubes of 30 mm diameter; The capacity can be increased many times by coupling several lower fraction collector parts together.
Non-volatile memory: Storage of all settings
Interface: RS-232 (optional)
Power supply: 95–240 V/60–50 Hz AC plug-in power supply with DC 9V/12W output; possible field operation on 12 V accumulator
Dimensions: 34 (W) x 30 (H) x 49 (D) cm
Weight: 6.5 Kg
Safety: CE, meets IEC 1010/1 norm for laboratory instruments
Operation temperature : 0-40 °C
Operation humidity: 0-90% RH, not condensing
Remote control: 0-10 V; (option 0-20 or 4-20 mA)

To compare the effectiveness of the biosurfactant for PAH removal with commercially available surfactants, dynamic experiments in columns were carried out. Fraction collector (Omnicoll®, LAMBDA Laboratory Instruments GmbH, Switzerland) was placed at the column outlet to recover the effluent fractions prior to further analyses. 

Florian Cazals, Stéfan Colombano, David Huguenot, Stéphanie Betelu, Nathalie Galopin, Arnault Perrault, Marie-Odile Simonnot, Ioannis Ignatiadis, Stéphanie Rossano, Marc Crampon,
Polycyclic aromatic hydrocarbons remobilization from contaminated porous media by (bio)surfactants washing, Journal of Contaminant Hydrology, Volume 251, 2022, 104065, ISSN 0169-7722.


The flow velocity was maintained using a peristaltic pump. Treated effluents were collected at set time intervals using a program-mable fraction collector (OMNICOLL single channel collector).

Farzaneh Feizi, Ajit K. Sarmah, Ropru Rangsivek, Kapish Gobindlal. Adsorptive removal of propranolol under fixed-bed column using magnetic tyre char: Effects of wastewater effluent organic matter and ball milling. Environmental Pollution, Volume 305, 2022, 119283, ISSN 0269-7491.


Effluents were collected in 2 h increments (corresponding to 7.5 PV, ca.5.4 mL) using a fraction collector (Lambda Omnicoll), sealed in PP bottles and refrigerated until analysis. 

Nicolas Perdrial, Angélica Vázquez-Ortega, Estela Reinoso-Maset, Peggy A. O'Day, Jon Chorover. Effects of flow on uranium speciation in soils impacted by acidic waste fluids. Journal of Environmental Radioactivity, Volumes 251–252, 2022, 106955, ISSN 0265-931X.


Dynamic sorption experiments were conducted in a fixed-bed column with 5 mL of RUA21207 resin. The solution was passed through a column at a 10 mL h− 1 flow rate. Samples of the solution were taken at regular intervals (1 h) using the fraction collector and autosampler OMNICOLL.

Denis Smyshlyaev, Evgenii Kirillov, Sergey Kirillov, Georgy Bunkov, Vladimir Rychkov, Maxim Botalov, Aslanbek Taukin, Alina Yuldashbaeva, Andrey Malyshev. Recovery and separation of Sc, Zr and Ti from acidic sulfate solutions for high purity scandium oxide production: Laboratory and pilot study. Hydrometallurgy, Volume 211, 2022, 105889, ISSN 0304-386X,


In the first part of the experiment, sorption with various resins was studied under statistical conditions. For this purpose, the sorbent was brought into contact with a model leaching solution, mixed for 24 hours, after which a solution sample was taken and analyzed. Sorption was carried out under dynamic conditions by passing the solution through an ion-exchange column using a peristaltic pump; samples were taken by the LAMBDA OMNICOLL fraction collector.

B. R. Oqilov, M. S. Botalov, V. N. Rychkov, and E. V. Kirillov. Study of sorption leaching of scandium from red mud with Succinic acid. AIP Conference Proceedings 2466, 050025 (2022)


The effluent was automatically sampled in fractions of 10 mL using a Lambda OMNICOLL Fraction Collector (Lambda Laboratory Instruments, Brno, Czech Republic). The desorption of heavy metal ions was also studied in dynamic conditions by passing a 0.1 M HCl aqueous solution through the column at a flow rate of 1 mL/min.

Dinu, M.V.; Humelnicu, I.; Ghiorghita, C.A.; Humelnicu, D. Aminopolycarboxylic Acids-Functionalized Chitosan-Based Composite Cryogels as Valuable Heavy Metal Ions Sorbents: Fixed-Bed Column Studies and Theoretical Analysis. Gels 2022, 8, 221. 


Soil column experiments were conducted with adjustable-height chromatography columns, made of borosilicate glass..For each experiment ~0.8 ml column effluent was collected in a 20-ml centrifuge tube using a fraction collector (OMNICOLL, LAMBDA Laboratory Systems, Switzerland)

Bahareh Kianfar, Jingya Tian, Joachim Rozemeijer, Bas van der Zaan, Thom A. Bogaard, Jan Willem Foppen. Transport characteristics of DNA-tagged silica colloids as a colloidal tracer in saturated sand columns; role of solution chemistry, flow velocity, and sand grain size. Journal of Contaminant Hydrology, Volume 246, 2022,
103954, ISSN 0169-7722.


The uranium sorption from model solutions in static mode was carrying out by use of anion-exchangers. The volume of resin loaded in the column was 5 mL, the filtration rate of solution through resin layer was 5 bed volume for 1 h. The filtrate at the outlet of the column was sampled by use of automatic fraction collector LAMBDA OMNICOLL (LAMBDA Laboratory Instruments, Switzerland).

Ksenia Nalivaiko, Sergey Skripchenko, Svetlana Titova, Vladimir Rychkov. Characterization and processing of radioactive uranium containing waste sludge by sulfuric acid leaching. Journal of Environmental Chemical Engineering, Volume 10, Issue 1, 2022, 106972, ISSN 2213-3437.


Programmed LAMBDA OMNICOLL single channel collector for collecting 3 mL of aqueous solutions at the outlet of a column at set time intervals. 

Feizi, F., Sarmah,A.K. & Rangsivek, R. (2021). Adsorption of pharmaceuticals in a fixed-bed column using tyre-based activated carbon: Experimental investigations and numerical modelling. Journal of Hazardous Materials, 2021.

Effluent solutions were collected with the fraction collector LAMBDA OMNICOLL. 

Vázquez-Ortega, A., Perdrial, N., Reinoso-Maset, E., Root, R. A., O’Day, P. A. & Chorover, J. (2021). Phosphate controls uranium release from acidic waste-weathered Hanford sediments. Journal of Hazardous Materials, Volume 416, 2021, 126240, ISSN 0304-3894.

The elute was collected using LAMBDA OMNICOLL fraction collector in 15 mL vials at a regular time interval and analyzed for concentrations in the effluents.

Nitin Khandelwal, Ekta Tiwari, Nisha Singh, and Gopala Krishna Darbha. Heterogeneously Porous Multiadsorbent Clay–Biochar Surface to Support Redox-Sensitive Nanoparticles: Applications of Novel Clay–Biochar–Nanoscale Zerovalent Iron Nanotrident (C-BC-nZVI) in Continuous Water Filtration.

ACS ES&T Water, 23/02/2021; 

Keywords: remediation, nanocomposite, REE extraction, toxic metal sorption, dye removal, water purification, nanoadsorbent, column separation

LAMBDA OMNICOLL Fraction Collector enabled the sampling of defined depth intervals. It is positioned in a glovebox using Argon to prevent re-oxidation of the samples.

Henning Schroeder,Lars Duester,Anne-Lena Fabricius,Dennis Ecker,Vera Breitung,Thomas A. Ternes. Sediment water (interface) mobility of metal(loid)s and nutrients under undisturbed conditions and during resuspension. 

Journal of Hazardous Materials, 19/03/2020; 

Keywords: Pore water depth profiles, ICP-QQQ-MS, Peeper, Mobilization, Multi-element 

Perifusate fractions were collected using an OMNICOLL automated fraction collection system into 96-well MASTERBLOCK plates (Greiner bio-one) and at the end of the ex- periment stored at −80 °C

Barlow, Jonathan et al. Conditioned media from contracting skeletal muscle potentiates insulin secretion and enhances mitochondrial energy metabolism of pancreatic beta-cells Metabolism.

Clinical and Experimental, Volume 91, 1 – 9;  

Keywords: Pancreatic beta-cell insulin secretion, Type 2 diabetes, Mitochondrial function, Exercise, Skeletal muscle, Organ crosstalk

To study the impact of mechanical disturbance and acidification on the metal(loid), OMNICOLL fraction collector is used to collect 12 profiles of 22 samples during each experiment. 

Henning Schroeder, Anne-Lena Fabricius, Dennis Ecke r, Thomas A. Ternes, Lars Duester, Impact of mechanical disturbance and acidification on the metal(loid) and C, P, S mobility at the sediment water interface examined using a fractionation meso profiling ICP-QQQ-MS approach. 

Federal Institute of Hydrology, Division G – Qualitative Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany

Keywords: Metal release, Pore water depth, profile Colloids Size, fractionation, Sediment water interface, Metalloid release.

OMNICOLL fraction collector was used to collect the elute in 1.2 − 3.6 mL fractions from the contaminated sediments packed column to investigate the mobilization of Tc under fully saturated seawater flow conditions
Jane Eagling, Paul J. Worsfold, William H. Blake, and Miranda J. Keith-Roach, Mobilization of Technetium from Reduced Sediments under Seawater Inundation and Intrusion Scenarios, Environ. Sci. Technol. 2012, 46, 11798−11803
Plymouth University, UK
Keywords: Column, HPLC, Fe-reducing sediments, Tc, polyetheretherketone (PEEK) self-pack column, Eh, Sediment reoxidation

Effluent collected by OMNICOLL fraction collector from the glass column filled with Bt horizon of a natural soil and analyzed by ion chromatography to study the sorption of major cations (Ca, Na) on a natural sediment
Jun Lu, Catherine Beaucaire, Emmanuel Tertre, Predictive model for migration of metallic cations in natural sediments, Procedia Earth and Planetary Science 7 ( 2013 ) 529 – 532.
CEA, DANS/DPC/SECR/L3MR and Université de Poitiers-CNRS, France.
Keywords: reactive transport model; metallic cation; sediment; ion exchange model; reversible sorption

Eluate was collected (60 min per fraction) by means of a LAMBDA OMNICOLL fraction collector to determine the silver ion release from coated catheters
Aylvin Jorge Angelo Athanasius Dias, Edith Elisabeth M. Van Den Bosch, Astrid Franken (2010), Antimicrobial coating, US Patent no. US 2010/0113871 A1.

Effluent from the glass chromatography column was collected by the OMNICOLL fraction collector to study ion-exchange reactions between Na+, H+, and Ca2+ under dynamic conditions
Jun Lu, Emmanuel Tertre, Catherine Beaucaire, Assessment of a predictive model to describe the migration of major inorganic cations in a Bt soil horizon, Applied Geochemistry, Volume 41, February 2014, Pages 151-162.
CEA, DANS/DPC/SECR/L3MR and Université de Poitiers-CNRS, France.
Keywords: Ion-exchange reactions; Cationic Exchange Capacity (CEC); Ion chromatography; Bt horizon; Packed column; Wyoming montmorillonite

OMNICOLL fraction collector was used to collect the eluent from the contaminated sediment packed PEEK column to determine the pH and 90Sr by liquid scintillation
Eagling, Jane, The effect of sea level rise on radionuclide mobility at contaminated nuclear sites, 2012.
Plymouth University, UK
Keywords: contaminated land, porewater salinization, radionuclide, geochemistry, release kinetics, transport, oxic and reduced sediments

Effluent samples were collected from the fixed bed column by the multi-channel LAMBDA OMNICOLL fraction collector to study the adsorption of selenite and selenate by Mg-Al-CO3 LDH in the continuous flow system
Chubar, Natalia, and Małgorzata Szlachta., Static and dynamic adsorptive removal of selenite and selenate by alkoxide-free sol–gel-generated Mg–Al–CO3 layered double hydroxide: Effect of competing ions, Chemical Engineering Journal 279 (2015): 885-896.
Utrecht University, The Netherlands; Glasgow Caledonian University, UK and Wrocław University of Technology, Poland.
Keywords: Selenite, Selenate, Mg-Al layered double hydroxide, Batch adsorption, Dynamic adsorption, FTIR

Automated sample collector OMNICOLL was used to collect effluent samples (10 ml/min) from the packed bed column to evaluate the transport potential of stabilized milled ZVI particle suspensions
Velimirovic, Milica, Doris Schmid, Stephan Wagner, Vesna Micić, Frank von der Kammer, and Thilo Hofmann, Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation, Science of The Total Environment (2015)
Helmholtz-Centre for Environmental Research - UFZ, Germany; University of Vienna, Austria
Keywords: Milled zerovalent iron, Agar agar, Particle stability, Particle transport, Particle reactivity

To develop a technology for extraction of Uranimum from sulphate chloride OMNICOLL fraction collector was used to collect samplings of filtrate in combination with multichannel peristaltic pump. 

Svetlana Mikhailovna TITOVA, Development of technology for sorption extraction of uranium from sulphate-chloride solutions of in-situ leaching: dissertation for the degree of candidate of technical sciences: 05.17.02.

Department of Rare Metals and Nanomaterials Institute of Physics and Technology

LAMBDA OMNICOLL connected to a HPLC column - by using a valve and a capillary - for collecting 2 ml fractions in 96 small scintillation vials (capacity of ~6 mL).

Gaugler, P., Gaugler, V., Kamleitner, M. & Schaaf, G. (2020). Extraction and Quantification of Soluble, Radiolabeled Inositol Polyphosphates from Different Plant Species using SAX-HPLC. Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn; 

Keywords: SAX-HPLC column, valve, scintillation vials, 2 ml fractions

During the firn core melting process in a clean booth (ISO 5), the remaining sample stream from the debubbler was collected with a liquid fraction collector LAMBDA OMNICOLL (~0.7 mL/min) as an archive of the meltwater.

Seokhyun Ro, S., Hur, S. D., Hong, S., Chang, Ch., Moon, J., Han, Y., Jun, S. J., Hwang, H. & Hong, S. (2020). An improved ion chromatography system coupled with a melter for highresolution ionic species reconstruction in Antarctic firn cores. Microchemical Journal, Elsevier, MICROC 105377; 

Keywords: on-line multi-ion chromatography system; firn core melter; fluoride ion; methanesulfonate ion; Styx Glacier; Antarctica. 

Can OMNICOLL replace the LKB Superfrac fraction collector (GE HealthCare) which is no longer available?
Yes, OMNICOLL fraction collector and sampler could replace Superfrac (also fraction collector Frac-950, Frac-920).

Do you also sell different heads to the collector that would allow collection into multiple racks at once?
We have a special customization for collecting fractions into multiple racks at once i.e. multi-stream configuration.

Do you have experience with controlling Ismatec IPC multichannel peristaltic pump with OMNICOLL?
LAMBDA offers a customized remote control cable for Ismatec multichannel pump for the analog communication between OMNICOLL and pump.

Should I be able to integrate any peristaltic pump with your LAMBDA OMNICOLL fraction collector?
You can use any peristaltic pump with the LAMBDA OMNICOLL fraction collector.
The OMNICOLL fraction collector provides a signal (~ 9 V) which is used by the communication module (art. no. 6911) to switch the pump off while moving from one fraction position to the other and at the end of the run. Therefore, there is no spilling between fractions.
Additionally, while using the OMNICOLL fraction collector with LAMBDA PERISTALTIC PUMP, the fraction collector can take fractions volumetrically by counting the pump impulsions (count mode). Therefore, each fraction will have the same impulsion number and, thus, have the same volume.

What is the top flow rate that the fraction collector unit can handle?
Our OMNICOLL Fraction Collector and Sampler is a flexible system and it adapts to your desired application. It is not limited by the feed rate and the number of samples being collected.
Because, the feed flow rate depends on the pressure difference and the diameter of the tubing used. You can choose the tubing and diameter as per your requirement.