Colector de Fracciones

Colector de Fracciones

Un nuevo concepto en colector de fracciones

Colector de fracciones LAMBDA OMNICOLL

Descripción de colector de fracciones

  • recolección de fracciones en cualquier gradillas o recipiente elegido
  • recoge un número ilimitado de fracciones o muestras
  • electrónica y partes móviles están situadas sobre los recipientes/tubos:
    - sin peligro para estas en caso de derrame
    - puede colocarse en baño frío o en otro contenedor termo estabilizado
  • Colección de fracciones acorde con tiempo (0.1–999.9 min o 1–9999 min) o volumen (0.05–500 mL o 0.1–30 L)
  • excelente calidad al precio justo
  • construcción metálica resistente a solventes
  • pausa (0–999.9 min ó 1–9999 min) o enjuague programable entre dos fracciones
  • hasta 18 fracciones simultáneas, operación multi-canal (en opción)

Personalizaciones del Colector de Fracciones OMNICOLL para aplicaciones cromatográficas

Dimensiones ilimitadas:

  • Desde microplacas, vasos de precipitado, tubos Corning, frascos hasta botellas de gran volumen, etc.
  • Colección de un número ilimitado de fracciones

Control muy flexible:

  • Colección de fracciones por señal externa en función del volumen, tiempo y posibilidad de conteo de gotas
  • Fácil programación y manejo

Colección de flujo único / flujos múltiples (multicanales):

  • Flujo único
  • Hasta 20 fracciones se pueden colectar en multiflujo de forma simultánea
Colector de fracciones con un solo canal o flujo Configuración del colector de fracciones para 4 canales Configuración de 6 canales para microplacas de 96 pozos
Colector de fracciones simple canal con bomba peristaltica PRECIFLOW Colección o Elución de fracciones multicanal, configuración de 4 canales Colector de fracciones OMNICOLL 6 canales en una microplaca de 96 pozos

Características del colector de fracciones y muestras LAMBDA OMNICOLL

  • Único colector de fracciones fácilmente programable para cualquier gradilla o recipiente seleccionado.
  • Componentes electrónicos y mecánicos miniaturizados colocados en la parte móvil situada sobre los tubos. Sin peligro de derrame de líquido sobre estos.
  • La base puede ser colocada en un baño frío o cualquier otro contenedor termo estabilizado.
  • Sistema de control que posee un moderno microprocesador con varios sensores ópticos, que con una simple marca de lápiz corrector permite la fácil programación de la posición de los tubos.
  • Recolección de fracciones según tiempo o volumen
  • Recolección de fracciones en línea o en zig-zag
  • Posibilidad de programación de una pausa entre fracciones (0.1-999.9 minutos o 1-9999 minutos). El colector de muestras OMNICOLL es utilizado en la toma de muestras (simples o múltiples) en procesos de fermentación, cultivo celular y en otros procesos biológicos o químicos.
  • La función de pausa puede utilizarse también para la puesta en marcha automática del colector de muestras.
  • Elección del número de fracciones en una serie, así es posible enjuagar la manguera entre cada muestra.
  • Con función “auto-stop” que apaga el colector automáticamente y detiene la recolección de muestras después de la gradilla seleccionada o al final de una línea.
  • Detención de caudal de bomba, que impide el derramamiento de líquido entre fracciones consecutivas.
  • La pieza móvil en este caso es la manguera de transferencia de líquidos y no los tubos. Así, se requiere menos energía y se logra la miniaturización del colector. Además, los tubos son fácilmente accesibles desde cualquier ángulo.
  • La base del colector puede ser utilizada para el transporte o almacenaje de fracciones. Un nuevo tapete plástico mantiene las gradillas o los recipientes en su posición.
  • Pueden usarse varias bases para incrementar la capacidad de recolección del colector de fracciones.
  • Trabaja a bajo voltaje para mayor seguridad del usuario. Fácil utilización en aplicaciones de campo de forma sencilla, ya que puede operar con batería.
  • Su sólida construcción metálica hace el colector de fracciones y muestreador resistente a solventes.
  • De fácil montaje y desmontaje. Requiere mínimo espacio de almacenamiento.
  • Por su construcción, el colector de muestras no requiere de un mantenimiento especial.
  • Excelente relación calidad - precio
  • Control remoto que permite la toma de muestras después de la recepción de una señal externa (p. ej. una alarma). Así, es posible obtener muestras importantes durante un proceso de larga duración, incluso sin supervisión.
  • Contador de gotas, válvula inerte, interfaz RS-232 y otros accesorios también se encuentran disponibles.

 

Tipo: LAMBDA OMNICOLL –Colector de fracciones programable controlado por un microprocesador
Modo de colección: Lineal (línea), meandro (zigzag) o en fila
Modo Normal:
Tiempo: 0.1 a 999.9 minutos (16.67 horas) en pasos de 0.1 min o 1 a 9999 minutos (166.7 horas) en pasos de 1 min
Volumen: 0.01 a 500 mL o 0.6 a 30 L (conteos externos empleando una bomba peristáltica LAMBDA)
Modo Alto: Similar a modo Normal pero con una pausa entre las fracciones (desde 0.1 a 999.9 min ó 1 a 9999 min)
Control remoto:
Modo Normal: Colector toma 1 única fracción después un pulso de voltaje externo de 3-12 V (12-30 V con un resistor de 3300 ohm)
Modo Alto: Colector toma fracciones de 1 a 999 después un pulso de voltaje externo de 3-12 V (12-30 V con un resistor de 3300 ohm)
Capacidad: Cualquier gradilla o contenedor con superficie menor de 45x31cm
Utilizando las gradillas suministradas: 360 tubos de 12-13 mm diámetro; 240 tubos de 16 mm diámetro; 160 tubos de 20 mm diámetro; 96 tubos de 30 mm diámetro; La capacidad se puede incrementar varias veces acoplando varias partes o soportes inferiores del colector.
Memoria no volátil: Almacena todos los datos
Interfaz: RS-232 (opcional)
Fuente de energía: 95–240 V/60–50 Hz AC conector a fuente de energía con salida a CD 9V/12W; posibilidad de operación en campo con el uso de una batería de 12 V
Dimensiones: 34 (A) x 30 (H) x 49 (P) cm
Peso: 6.5 Kg
Seguridad: Conforme a la CE, conforme con la norma IEC 1010/1 para instrumentos de laboratorio
Temperatura de operación: 0-40 °C
Humedad de operación: 0-90% HR, sin condensación
Control remoto: 0-10 V; (opción 0-20 o 4-20 mA)

The flow velocity was maintained using a peristaltic pump. Treated effluents were collected at set time intervals using a program-mable fraction collector (OMNICOLL single channel collector).

Farzaneh Feizi, Ajit K. Sarmah, Ropru Rangsivek, Kapish Gobindlal. Adsorptive removal of propranolol under fixed-bed column using magnetic tyre char: Effects of wastewater effluent organic matter and ball milling. Environmental Pollution, Volume 305, 2022, 119283, ISSN 0269-7491.

DOI: https://doi.org/10.1016/j.envpol.2022.119283 


Effluents were collected in 2 h increments (corresponding to 7.5 PV, ca.5.4 mL) using a fraction collector (Lambda Omnicoll), sealed in PP bottles and refrigerated until analysis. 

Nicolas Perdrial, Angélica Vázquez-Ortega, Estela Reinoso-Maset, Peggy A. O'Day, Jon Chorover. Effects of flow on uranium speciation in soils impacted by acidic waste fluids. Journal of Environmental Radioactivity, Volumes 251–252, 2022, 106955, ISSN 0265-931X.

DOI: https://doi.org/10.1016/j.jenvrad.2022.106955 


Dynamic sorption experiments were conducted in a fixed-bed column with 5 mL of RUA21207 resin. The solution was passed through a column at a 10 mL h− 1 flow rate. Samples of the solution were taken at regular intervals (1 h) using the fraction collector and autosampler OMNICOLL.

Denis Smyshlyaev, Evgenii Kirillov, Sergey Kirillov, Georgy Bunkov, Vladimir Rychkov, Maxim Botalov, Aslanbek Taukin, Alina Yuldashbaeva, Andrey Malyshev. Recovery and separation of Sc, Zr and Ti from acidic sulfate solutions for high purity scandium oxide production: Laboratory and pilot study. Hydrometallurgy, Volume 211, 2022, 105889, ISSN 0304-386X,

DOI: https://doi.org/10.1016/j.hydromet.2022.105889 


In the first part of the experiment, sorption with various resins was studied under statistical conditions. For this purpose, the sorbent was brought into contact with a model leaching solution, mixed for 24 hours, after which a solution sample was taken and analyzed. Sorption was carried out under dynamic conditions by passing the solution through an ion-exchange column using a peristaltic pump; samples were taken by the LAMBDA OMNICOLL fraction collector.

B. R. Oqilov, M. S. Botalov, V. N. Rychkov, and E. V. Kirillov. Study of sorption leaching of scandium from red mud with Succinic acid. AIP Conference Proceedings 2466, 050025 (2022)

DOI: https://doi.org/10.1063/5.0092655 


The effluent was automatically sampled in fractions of 10 mL using a Lambda OMNICOLL Fraction Collector (Lambda Laboratory Instruments, Brno, Czech Republic). The desorption of heavy metal ions was also studied in dynamic conditions by passing a 0.1 M HCl aqueous solution through the column at a flow rate of 1 mL/min.

Dinu, M.V.; Humelnicu, I.; Ghiorghita, C.A.; Humelnicu, D. Aminopolycarboxylic Acids-Functionalized Chitosan-Based Composite Cryogels as Valuable Heavy Metal Ions Sorbents: Fixed-Bed Column Studies and Theoretical Analysis. Gels 2022, 8, 221. 

DOI: https://doi.org/10.3390/gels8040221  


Soil column experiments were conducted with adjustable-height chromatography columns, made of borosilicate glass..For each experiment ~0.8 ml column effluent was collected in a 20-ml centrifuge tube using a fraction collector (OMNICOLL, LAMBDA Laboratory Systems, Switzerland)

Bahareh Kianfar, Jingya Tian, Joachim Rozemeijer, Bas van der Zaan, Thom A. Bogaard, Jan Willem Foppen. Transport characteristics of DNA-tagged silica colloids as a colloidal tracer in saturated sand columns; role of solution chemistry, flow velocity, and sand grain size. Journal of Contaminant Hydrology, Volume 246, 2022,
103954, ISSN 0169-7722.

DOI: https://doi.org/10.1016/j.jconhyd.2022.103954.


The uranium sorption from model solutions in static mode was carrying out by use of anion-exchangers. The volume of resin loaded in the column was 5 mL, the filtration rate of solution through resin layer was 5 bed volume for 1 h. The filtrate at the outlet of the column was sampled by use of automatic fraction collector LAMBDA OMNICOLL (LAMBDA Laboratory Instruments, Switzerland).

Ksenia Nalivaiko, Sergey Skripchenko, Svetlana Titova, Vladimir Rychkov. Characterization and processing of radioactive uranium containing waste sludge by sulfuric acid leaching. Journal of Environmental Chemical Engineering, Volume 10, Issue 1, 2022, 106972, ISSN 2213-3437.

DOI: https://doi.org/10.1016/j.jece.2021.106972 


Programmed LAMBDA OMNICOLL single channel collector for collecting 3 mL of aqueous solutions at the outlet of a column at set time intervals. 

Feizi, F., Sarmah,A.K. & Rangsivek, R. (2021). Adsorption of pharmaceuticals in a fixed-bed column using tyre-based activated carbon: Experimental investigations and numerical modelling. Journal of Hazardous Materials, 2021.

https://doi.org/10.1016/j.jhazmat.2021.126010


Effluent solutions were collected with the fraction collector LAMBDA OMNICOLL. 

Vázquez-Ortega, A., Perdrial, N., Reinoso-Maset, E., Root, R. A., O’Day, P. A. & Chorover, J. (2021). Phosphate controls uranium release from acidic waste-weathered Hanford sediments. Journal of Hazardous Materials, Volume 416, 2021, 126240, ISSN 0304-3894. 

https://doi.org/10.1016/j.jhazmat.2021.126240


The elute was collected using LAMBDA OMNICOLL fraction collector in 15 mL vials at a regular time interval and analyzed for concentrations in the effluents.

Nitin Khandelwal, Ekta Tiwari, Nisha Singh, and Gopala Krishna Darbha. Heterogeneously Porous Multiadsorbent Clay–Biochar Surface to Support Redox-Sensitive Nanoparticles: Applications of Novel Clay–Biochar–Nanoscale Zerovalent Iron Nanotrident (C-BC-nZVI) in Continuous Water Filtration.

ACS ES&T Water, 23/02/2021; https://doi.org/10.1021/acsestwater.0c00147 

Keywords: remediation, nanocomposite, REE extraction, toxic metal sorption, dye removal, water purification, nanoadsorbent, column separation


LAMBDA OMNICOLL Fraction Collector enabled the sampling of defined depth intervals. It is positioned in a glovebox using Argon to prevent re-oxidation of the samples.

Henning Schroeder,Lars Duester,Anne-Lena Fabricius,Dennis Ecker,Vera Breitung,Thomas A. Ternes. Sediment water (interface) mobility of metal(loid)s and nutrients under undisturbed conditions and during resuspension. 

Journal of Hazardous Materials, 19/03/2020; https://doi.org/10.1016/j.jhazmat.2020.122543 

Keywords: Pore water depth profiles, ICP-QQQ-MS, Peeper, Mobilization, Multi-element 


Perifusate fractions were collected using an OMNICOLL automated fraction collection system into 96-well MASTERBLOCK plates (Greiner bio-one) and at the end of the ex- periment stored at −80 °C

Barlow, Jonathan et al. Conditioned media from contracting skeletal muscle potentiates insulin secretion and enhances mitochondrial energy metabolism of pancreatic beta-cells Metabolism.

Clinical and Experimental, Volume 91, 1 – 9; https://doi.org/10.1016/j.metabol.2018.11.004  

Keywords: Pancreatic beta-cell insulin secretion, Type 2 diabetes, Mitochondrial function, Exercise, Skeletal muscle, Organ crosstalk


To study the impact of mechanical disturbance and acidification on the metal(loid), OMNICOLL fraction collector is used to collect 12 profiles of 22 samples during each experiment. 

Henning Schroeder, Anne-Lena Fabricius, Dennis Ecke r, Thomas A. Ternes, Lars Duester, Impact of mechanical disturbance and acidification on the metal(loid) and C, P, S mobility at the sediment water interface examined using a fractionation meso profiling ICP-QQQ-MS approach. 

Federal Institute of Hydrology, Division G – Qualitative Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany

Keywords: Metal release, Pore water depth, profile Colloids Size, fractionation, Sediment water interface, Metalloid release.


OMNICOLL fraction collector was used to collect the elute in 1.2 − 3.6 mL fractions from the contaminated sediments packed column to investigate the mobilization of Tc under fully saturated seawater flow conditions
Jane Eagling, Paul J. Worsfold, William H. Blake, and Miranda J. Keith-Roach, Mobilization of Technetium from Reduced Sediments under Seawater Inundation and Intrusion Scenarios, Environ. Sci. Technol. 2012, 46, 11798−11803
Plymouth University, UK
Keywords: Column, HPLC, Fe-reducing sediments, Tc, polyetheretherketone (PEEK) self-pack column, Eh, Sediment reoxidation


Effluent collected by OMNICOLL fraction collector from the glass column filled with Bt horizon of a natural soil and analyzed by ion chromatography to study the sorption of major cations (Ca, Na) on a natural sediment
Jun Lu, Catherine Beaucaire, Emmanuel Tertre, Predictive model for migration of metallic cations in natural sediments, Procedia Earth and Planetary Science 7 ( 2013 ) 529 – 532.
CEA, DANS/DPC/SECR/L3MR and Université de Poitiers-CNRS, France.
Keywords: reactive transport model; metallic cation; sediment; ion exchange model; reversible sorption


Eluate was collected (60 min per fraction) by means of a LAMBDA OMNICOLL fraction collector to determine the silver ion release from coated catheters
Aylvin Jorge Angelo Athanasius Dias, Edith Elisabeth M. Van Den Bosch, Astrid Franken (2010), Antimicrobial coating, US Patent no. US 2010/0113871 A1.


Effluent from the glass chromatography column was collected by the OMNICOLL fraction collector to study ion-exchange reactions between Na+, H+, and Ca2+ under dynamic conditions
Jun Lu, Emmanuel Tertre, Catherine Beaucaire, Assessment of a predictive model to describe the migration of major inorganic cations in a Bt soil horizon, Applied Geochemistry, Volume 41, February 2014, Pages 151-162.
CEA, DANS/DPC/SECR/L3MR and Université de Poitiers-CNRS, France.
Keywords: Ion-exchange reactions; Cationic Exchange Capacity (CEC); Ion chromatography; Bt horizon; Packed column; Wyoming montmorillonite


OMNICOLL fraction collector was used to collect the eluent from the contaminated sediment packed PEEK column to determine the pH and 90Sr by liquid scintillation
Eagling, Jane, The effect of sea level rise on radionuclide mobility at contaminated nuclear sites, 2012.
Plymouth University, UK
Keywords: contaminated land, porewater salinization, radionuclide, geochemistry, release kinetics, transport, oxic and reduced sediments


Effluent samples were collected from the fixed bed column by the multi-channel LAMBDA OMNICOLL fraction collector to study the adsorption of selenite and selenate by Mg-Al-CO3 LDH in the continuous flow system
Chubar, Natalia, and Małgorzata Szlachta., Static and dynamic adsorptive removal of selenite and selenate by alkoxide-free sol–gel-generated Mg–Al–CO3 layered double hydroxide: Effect of competing ions, Chemical Engineering Journal 279 (2015): 885-896.
Utrecht University, The Netherlands; Glasgow Caledonian University, UK and Wrocław University of Technology, Poland.
Keywords: Selenite, Selenate, Mg-Al layered double hydroxide, Batch adsorption, Dynamic adsorption, FTIR


Automated sample collector OMNICOLL was used to collect effluent samples (10 ml/min) from the packed bed column to evaluate the transport potential of stabilized milled ZVI particle suspensions
Velimirovic, Milica, Doris Schmid, Stephan Wagner, Vesna Micić, Frank von der Kammer, and Thilo Hofmann, Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation, Science of The Total Environment (2015)
Helmholtz-Centre for Environmental Research - UFZ, Germany; University of Vienna, Austria
Keywords: Milled zerovalent iron, Agar agar, Particle stability, Particle transport, Particle reactivity


To develop a technology for extraction of Uranimum from sulphate chloride OMNICOLL fraction collector was used to collect samplings of filtrate in combination with multichannel peristaltic pump. 

Svetlana Mikhailovna TITOVA, Development of technology for sorption extraction of uranium from sulphate-chloride solutions of in-situ leaching: dissertation for the degree of candidate of technical sciences: 05.17.02.

Department of Rare Metals and Nanomaterials Institute of Physics and Technology


LAMBDA OMNICOLL connected to a HPLC column - by using a valve and a capillary - for collecting 2 ml fractions in 96 small scintillation vials (capacity of ~6 mL).

Gaugler, P., Gaugler, V., Kamleitner, M. & Schaaf, G. (2020). Extraction and Quantification of Soluble, Radiolabeled Inositol Polyphosphates from Different Plant Species using SAX-HPLC. Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn; https://doi.org/10.3791/61495 

Keywords: SAX-HPLC column, valve, scintillation vials, 2 ml fractions


During the firn core melting process in a clean booth (ISO 5), the remaining sample stream from the debubbler was collected with a liquid fraction collector LAMBDA OMNICOLL (~0.7 mL/min) as an archive of the meltwater.

Seokhyun Ro, S., Hur, S. D., Hong, S., Chang, Ch., Moon, J., Han, Y., Jun, S. J., Hwang, H. & Hong, S. (2020). An improved ion chromatography system coupled with a melter for highresolution ionic species reconstruction in Antarctic firn cores. Microchemical Journal, Elsevier, MICROC 105377; https://doi.org/10.1016/j.microc.2020.105377 

Keywords: on-line multi-ion chromatography system; firn core melter; fluoride ion; methanesulfonate ion; Styx Glacier; Antarctica. 

Can OMNICOLL replace the LKB Superfrac fraction collector (GE HealthCare) which is no longer available?
Yes, OMNICOLL fraction collector and sampler could replace Superfrac (also fraction collector Frac-950, Frac-920).


Do you also sell different heads to the collector that would allow collection into multiple racks at once?
We have a special customization for collecting fractions into multiple racks at once i.e. multi-stream configuration.


Do you have experience with controlling Ismatec IPC multichannel peristaltic pump with OMNICOLL?
LAMBDA offers a customized remote control cable for Ismatec multichannel pump for the analog communication between OMNICOLL and pump.


Should I be able to integrate any peristaltic pump with your LAMBDA OMNICOLL fraction collector?
You can use any peristaltic pump with the LAMBDA OMNICOLL fraction collector.
The OMNICOLL fraction collector provides a signal (~ 9 V) which is used by the communication module (art. no. 6911) to switch the pump off while moving from one fraction position to the other and at the end of the run. Therefore, there is no spilling between fractions.
Additionally, while using the OMNICOLL fraction collector with LAMBDA PERISTALTIC PUMP, the fraction collector can take fractions volumetrically by counting the pump impulsions (count mode). Therefore, each fraction will have the same impulsion number and, thus, have the same volume.


What is the top flow rate that the fraction collector unit can handle?
Our OMNICOLL Fraction Collector and Sampler is a flexible system and it adapts to your desired application. It is not limited by the feed rate and the number of samples being collected.
Because, the feed flow rate depends on the pressure difference and the diameter of the tubing used. You can choose the tubing and diameter as per your requirement.