Fermentador y biorreactor

Fermentador y biorreactor

Innovador fermentador / biorreactor de gran calidad a la mitad del costo. Nuevo concepto en fermentación y cultivo celular

Fermentador LAMBDA MINIFOR - Descripción de fermentador de laboratorio

Fermentador MINIFOR: Mediante la introducción de varias ideas e innovaciones hemos logrado producir un excelente fermentador-biorreactor a la mitad del costo, sin comprometer su calidad.

LAMBDA MINIFOR Fermentador-Biorreactor

  • Nuevo frasco o vaso de reacción de vidrio con cuellos laterales con rosca y un soporte de fijación
  • Nuevo mezclador vibrador con membrana de silicona (vibromixing) en lugar de un costoso agitador magnético en hélice, que garantiza una esterilidad a largo plazo
  • Volúmenes de cultivo desde 35 mL hasta más 6 litros en un sólo equipo
  • El nuevo radiador patentado IR (infrarrojo) con un reflector parabólico banado en oro se utiliza para calentar suavemente el medio de cultivo (sin costosos banos termostáticos)
  • Materiales de alto rendimiento reemplazan las costosas piezas de acero inoxidable en otros fermentadores
  • Compacto y práctico, de fácil acceso desde cualquier ángulo
  • Nueva agitación “fish-tail” (cola de pez) para suave mezclado en cultivos celulares
  • Para cultivos continuos, procesos batch y fed-batch
  • Indicado para la fermentación en paralelo
  • Regulación precisa de gas por caudalímetro másico
  • Control automático de formación de espuma (opcional)
  • Montaje y desmontaje en tiempo mínimo
  • Fácil sistema de esterilidad (“easy sterility”)
  • Fácil operación y programación
  • Esterilizable en autoclave común
  • Autónomo o controlable por PC (software de control FNet o SIAM)

La necesidad de un pequeno fermentador de laboratorio para volúmenes desde 0.035 hasta más de 6 litros nos llevó a la fabricación del MINIFOR.

Vasos de reacción autoclaveables: Volúmenes de trabajo desde 35 ml hasta 6 l

Con base en nuestra vasta experiencia en fermentación, quisimos desarrollar un fermentador que fuera fácil de usar y que tuviera la capacidad de medir y controlar todos los parámetros importantes requeridos en un cultivo biológico. Para cumplir dicha función, el fermentador debe ocupar un mínimo de espacio en el laboratorio, pero dejando buen acceso a todas sus partes.

Para la optimización de los parámetros de crecimiento del cultivo o de la biotransformación, debe ser posible colocar varios fermentadores uno al lado del otro. Cada fermentador debe ser capaz de trabajar independientemente o conectado a un PC, para una avanzada regulación y procesamiento de datos.

Con el fin de mantener el bajo costo del Fermentador MINIFOR, hemos introducido varias ideas e innovaciones sin comprometer su calidad:

En lugar de un frasco con una costosa cubierta de acero inoxidable, utilizamos un recipiente o vaso de reacción de vidrio con cuellos laterales con rosca, sistema que ha sido utilizado por muchos anos en el área del cultivo celular para mantener la esterilidad.

En lugar del tradicional agitador de hélice, que requiere de un costoso motor y acoplamiento magnético, hemos introducido un nuevo sistema de vibración. Un electroimán y una económica membrana aseguran una perfecta esterilidad y garantizan una mezcla efectiva, sin la formación de vórtices en el medio. No se precisan baffles (deflectores). Al mismo, tiempo este tipo de mezclador es más suave con las células y produce menos espuma.

El cultivo es calentado a través de la radiación de calor producida por un radiador con un reflector parabólico banado en oro, localizado debajo del recipiente fermentador. De esta manera el cultivo es calentado suavemente de modo similar al que el sol calienta el agua. Así no habrá sobrecalentamiento del cultivo, como generalmente ocurre cuando el calentador está colocado dentro del medio. Los costosos frascos de doble pared y banos termostáticos quedan eliminados, al mismo tiempo que los tubos y cables, haciendo al fermentador menos complejo.

Algunas partes metálicas han sido reemplazadas por unas nuevas de materiales plásticos de alta calidad.

Con la implementación de modernos microprocesadores, ha sido posible situar toda su electrónica en la parte frontal del aparato, eliminando así la carcasa de los fermentadores tradicionales. Esto hace al fermentador increíblemente compacto. A pesar de su pequeno tamano, el MINIFOR tiene la capacidad de medir y controlar 6 parámetros en la configuración básica del MINIFOR. 

Alimentación: Fuente de energía universal para 100-245 V AC/50 -60 Hz, 560 W, conforme con la CE
Dimensiones: 22 x 40 x 38 cm (A x D x H)
Visualizador: LCD de 4 x 40 dígitos con iluminación de fondo
Frasco fermentador: Vasos de 0,3, 0,4, 1,3, y 6 L de vidrio de borosilicato Pyrex con 6-8 cuellos con roscas
Control de temperatura: Fuente de calor mediante radiaciones infrarrojas (IR) de alta eficiencia de 150 W con reflector parabólico dorado
Regulación: Desde 5°C sobre la temperatura ambiente hasta 70°C
Medición: Desde 0 hasta 99.9°C en pasos de 0.1°C
Precisión: +/- 0.2°C (0 hasta 60°C)
Sensor: Pt 100 incorporada en el electrodo de cristal o vidrio de electrodo de pH
Control del pH: Un electrodo de pH 0 - 14 esterilizable, con corrección automática de la temperatura, calibración semiautomática de dos puntos y conector Variopin
Resolución: 0.01 pH unidades
Precisión: +/- 0.02 pH unidades
Control pO2: El electrodo de oxígeno tipo Clark esterilizable con una respuesta rápida, corrección automática de la temperatura, calibración semiautomática de dos puntos, y control de oxígeno disuelto (OD) a través de la regulación del flujo de aire
Rango: 0 hasta 25 mg de oxígeno/l, en pasos de 0.1 mg/l
Flujo de aire: De 0 a 5 l/min en pasos de 0,01 l/min, medido por un preciso de flujo de masa, linealidad +/- 3%, reproducibilidad +/- 0,5%
Control: Válvula proporcional controlada por microprocesador
Presión del aire: 0.05 – 0.2 MPa (0.5 - 2 atm)
Agitación: Vibromezclador de 50 W de 0 a 20 Hz (de 0 a 1200 rpm) en intervalos o pasos de 0,1 Hz (6 rpm) con 1 o más discos de agitación; esterilidad similar al acoplamiento magnético
Parámetro adicional: Un parámetro adicional puede ser controlado por el instrumento (formación de espuma, el peso (para cultivos continuos), pCO2, potencial redox, conductividad, etc); con normas o estándares de salida de 0-10V o 0-20mA
Ports / side necks: Un puerto de muestreo cuádruple o para adiciones con 4 agujas con conexiones de LAMBDA-PEEK con doble sello usados para muestreo, inoculación, anti-espumante, suministro de medio, etc, puertos adicionales dobles están disponibles
Bombas: Hasta 4 bombas independientes (PRECIFLOW, MULTIFLOW, HIFLOW o MAXIFLOW) con variación de la velocidad de 0 a 100% pueden ser utilizadas con el bioreactor - fermentador de laboratorio MINIFOR
Control de flujo de gas: Además de las bombas, varios controladores electrónicos de flujo con intervalos de flujo de 0 - 5 l/min (MASSFLOW 5000) ó 0 - 500 ml/min (MASSFLOW 500) puede usarse para la adición regulada de los gases (Ej, N2, O2, aire, CO2) en cultivos celulares; módulo de estación de gases de configuración libre
Temperatura de trabajo: 0 - 40 °C
Humedad relativa: 0 - 90 % RH, sin condensación
Peso: 7.5 kg
Control PC: Control completo mediante el ordenador y el procesamiento de datos de la fermentación utilizando el programa FNet (para un máximo de 6 fermentadores MINIFOR) o SIAM (para un número aún mayor de instrumentos)
 
2023: LAMBDA MINIFOR 0.4L bioreactor for medium conditioning (37 °C, pH 7.2, constant anaerobic conditions (10% H2, 10% CO2, N2)) with weighing module and medium pumps (30 ml/h) in a dynamic in vitro biofilm model for mimicking the oral cavity environment.

Alonso-Español, A., Bravo, E., Ribeiro-Vidal, H., Virto, L., Herrera, D., Alonso, B. & Sanz, M. (2023). The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces. Int. J. Mol. Sci. 2023, 24, 2335.

2023: Itaconic acid (IA) production by continuous aerobic fungal fermentation (1.8 L, 37 °C, 0.2 vvm pure oxygen, pH naturally reduced to <2.5) in a LAMBDA MINIFOR bioreactor with native itaconic acid overporducing Aspergillus terreus NRRL 1966 using high glucose concentration (maintained at ~150 g/L) as carbon source.
 
Rózsenberszki, T., Komáromy, P., Hülber-Beyer, E., Pesti, A., Koók, L., Bakonyi, P., Bélafi-Bakó, K. & Nemestóthy, N. (2023). Bipolar membrane electrodialysis integration into the biotechnological production of itaconic acid: A proof-of-concept study. Chemical Engineering Research and Design, Volume 190, 2023, Pages 187-197, ISSN 0263-8762.

2023: LAMBDA MINIFOR fermenters for coculture experiments at 30 °C of Lactobacillus kefiri and Kazachstania unispora in modfied MRS media as well as in mare milk (inital: ~106 CFU·mL−1, pH = 6.8)

Kondybayev, A., Achir, N., Mestres, C., Collombel, I., Strub, C., Grabulos, J., Akhmetsadykov, N., Aubakirova, A., Kamidinkyzy, U., Ghanmi, W. & Konuspayeva, G. (2023). Growth Kinetics of Kazachstania unispora and Its Interaction with Lactic Acid Bacteria during Qymyz Production. Fermentation 2023, 9, 101.

https://doi.org/10.3390/fermentation9020101 


2022: During 65 days, two continuous (HRT= 5 days) stirrer tank fermenters LAMBDA MINIFOR were operated under anaerobic conditions (N2 into headspace & sparging), each with 1 liter working volume (modification of lactate / acetate concentrations) inoculated with caproate-producing sludge (Caproiciproducens genus (Ruminococcaceae family)), temperature control (30 °C, build-in IR heater, Mettler InPro 3253 probe) and pH control (pH 5.5, NaOH 2M, HCl 0.5M) ) with four peristaltic pumps (feed, effluent, base & acid) and daily liquid sampling for carboxylates and alcohols analysis.
 
Brodowski, F., Lezyk, M., Gutowska, N., Kabasakal, T. & Oleskowicz-Popiel, P. (2022). Influence of lactate to acetate ratio on biological production of medium chain carboxylates via open culture fermentation. Science of The Total Environment, Volume 851, Part 1, 2022, 158171, ISSN 0048-9697.

2022: The continuous culture was performed in a Lambda Photobioreactor (PBR). White light from the Lambda LUMO module was calibrated to umolm−2 m−1. For evaporation control and continuous culture mode, the total weight of the reactor setup was kept constant using the built-in Lambda reactor mass control module and automatic addition of fresh culture medium through the feed pump. Continuous culture was performed by setting the waste pump to a fixed speed.

Anna Behle, Maximilian Dietsch, Louis Goldschmidt, Wandana Murugathas, Lutz C Berwanger, Jonas Burmester, Lun Yao, David Brandt, Tobias Busche, Jörn Kalinowski, Elton P Hudson, Oliver Ebenhöh, Ilka M Axmann, Rainer Machné, Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis, Nucleic Acids Research, Volume 50, Issue 22, 9 December 2022, Pages 12790–12808.

https://doi.org/10.1093/nar/gkac1132 


 

2022: Biocatalytic resolution of lupanine racemate in industrial wastewater by Pseudomonas putida LPK411 using a lab‐scale bioreactor LAMBDA MINIFOR 0.4L under batch operation.

Parmaki, S., Esteves, T., Gonçalves, J.M.J. Catenacci, A., Malpei, F., Ferreira, F.C., Afonso C.A.M & Koutinas, M. (2022). Selective microbial resolution of lupanine racemate: Bioprocess development and the impact of carbon catabolite repression on industrial wastewater valorisation. Biomass Conv. Bioref. (2022).

https://doi.org/10.1007/s13399-022-03383-3 


2022: LAMBDA MINIFOR fermenters with weighing modules to control the harvest pumps for the continuous anaerobic biotechnological process were used to verify how the external acetate affects the product spectrum, gas production, stability and efficiency of carboxylates production.
 
Brodowski, F., Lezyk, M., Gutowska & Oleskowicz-Popiel, P. (2022). Effect of external acetate on lactate-based carboxylate platform: Shifted lactate overloading limit and hydrogen co-production. Science of The Total Environment, Volume 802, 2022, 149885, ISSN 0048-9697.

2022: Escherichia coli (E. coli; E44Δ) mutant strain for production of large quantity of outer membrane vesicles (OMVs) in a LAMBDA MINIFOR 7L fermenter. 

Allahghadry, T., Bojesen, A.M., Whitehead, B.J. and Antenucci, F. (2022). Clarification of large-volume bacterial cultures using a centrifuge-free protocol. J Appl Microbiol. Accepted Author Manuscript. 

https://doi.org/10.1111/jam.15608 


2021: Experiments on liquid phase (hemicelluloses hydrolysate) for xylitol production: The fermentation of 250 ml of detoxified hydrolysate was conducted in a 1L fermenter (Lambda minifor-bench-top-laboratory-fermenter) and pH adjustment (pH 5.0) at aerobic conditions at 30C for 60 hr. 

Shalsh, D., Dhoha Kadeem Nagimm, Muhammad Abdul Alrheem, & Saffa Abedul Alrheem. (2021). Batch fermentation and Simultaneous Saccharification and Fermentation (SSF) processes by Meyerozyma Guilliermondii Strain F22 and Saccharomyces cerecvisae for xylitol and bioethanol co-production. Al-Qadisiyah Journal of Pure Science, 26(4), 80–94.

https://doi.org/10.29350/qjps.2021.26.4.1347 


2021: The growth, glucose consumption and ethanol production of Saccharomyces cerevisiae LM strain in synthetic broth were modeled for the most important intrinsic...One liter Lambda Minifor fermenters equipped with a cold water condenser on air exit pipes (LAMBDA Instruments GmbH, Baar- Switzerland), were used.

Christelle Kouamé, Gérard Loiseau, Joël Grabulos, Renaud Boulanger, Christian Mestres. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. International Journal of Food Microbiology, Volume 337, 2021, 108917, ISSN 0168-1605. 

https://doi.org/10.1016/j.ijfoodmicro.2020.108917


2021: Continuous culture of cyanobacteria Synechocystis sp. PCC 6803 in a LAMBDA MINIFOR 1L PBR photo-bioreactor. 

Behle, A., Dietsch, M., Goldschmidt, L., Murugathas, W., Brandt, D., Busche, T., Kalinowski, J., Ebenhöh, O., Axmann, I. M. & Machné, R. (2021) Uncoupling of the Diurnal Growth Program by Artificial Genome Relaxation in Synechocystis sp. PCC 6803. bioRxiv 2021.07.26.453758.

https://doi.org/10.1101/2021.07.26.453758 


2021: The hydrolysis of kiwicha protein isolate (KPI) is performed under continuous stirring, using a LAMBDA MINIFOR fermenter-bioreactor, at controlled conditions of pH and temperature: Bioprotease LA-660 is added at a ratio enzyme/substrate = 0.3 AU/g protein (pH 8) for 5, 10, 15, 30, and 60 min.

Paz, S.M.-d.l.; Martinez-Lopez, A.; Villanueva-Lazo, A.; Pedroche, J.; Millan, F. & Millan-Linares, M.C. (2021). Identification and Characterization of Novel Antioxidant Protein Hydrolysates from Kiwicha (Amaranthus caudatus L.). Antioxidants 10, no. 5: 645.

https://doi.org/10.3390/antiox10050645


2021: The biological transformation of white sorghum biomass was performed under operating conditions similar to the MixAlco process. MixAlco batch fermentation process were performed in the LAMBDA MINIFOR bioreactor.

Fawzia J. Shalsh, Nagham Abdul Alrazzaq, Dhoha K. Nagimm 1, Muhammad Abdul Alrheem,  Saffa Abedul Alrheem & Kolad Abd alalah. (2021). Bioconversion of white sorghum biomass using MixAlco fermentation process. DYSONA – Applied Science. 2021(2), 21-27. ISSN 2708-6283.

https://doi.org/10.30493/DAS.2021.248966


2020: Different yeast strains were cultivated in the 0.4L MINIFOR Fermentor to study the metabolic cylce and pathway. 

J. Feltham, S. Xi, S. Murray, M. Wouters, J. Urdiain-Arraiza, C. George, A. Townley, E. Roberts, R. Fisher, S. Liberatori, S. Mohammed, B. Kessler & J. Mellor. (2020). Transcriptional changes are regulated by metabolic pathway dynamics but decoupled from protein levels. bioRxiv 833921.

https://doi.org/10.1101/833921


2020: LAMBDA MINIFOR Bioreactor is used as a Rumen membrane bioreactor to produce volatile fatty acids (VFA) from crop residues (lignocellulosic biomass) by mimicking the digestive system of ruminant animals.

Nguyen, A.Q., Nguyen, L.N., Abu Hasan Johir, M., Ngo, H-H., Chaves, A.V. & Nghiem, L.D. (2020) Derivation of volatile fatty acid from crop residues digestion using a rumen membrane bioreactor: a feasibility study. Bioresource Technology 2020.

https://doi.org/10.1016/j.biortech.2020.123571


2020: Enzymatic hydrolysis experiments were carried out in the lab-scale MINIFOR stirred-batch bioreactor. The pretreated vine-shoot waste was delignified with sodium chlorite for lignin removal and then enzymatically hydrolyzed using new types of enzymes (cellulase from Trichoderma reesei and b-glucosidase).

Eniko Kovacs, Daniela Alexandra Scurtu, Lacrimioara Senila, Oana Cadar, Diana Elena Dumitras & Cecilia Roman (2020). Green Protocols for the Isolation of Carbohydrates from Vineyard Vine-Shoot Waste. Analytical Letters.

https://doi.org/10.1080/00032719.2020.1721001


2020: MINIFOR bioreactor used to produce Itaconic Acid biotechnologically by Aspergillus terreus fungal strain from glucose

Nemestóthy, N., Komáromy, P., Bakonyi, P. et al. (2020). Carbohydrate to Itaconic Acid Conversion by Aspergillus terreus and the Evaluation of Process Monitoring Based on the Measurement of CO2 Waste and Biomass. Valorization 2020.

https://doi.org/10.1007/s12649-019-00729-3


2019: LAMBDA MINIFOR bioreactor used in turbidostat experiments with recombinant cells in continuous culture operation mode

L. Pasotti, M. Bellato, N. Politi, M. Casanova, S. Zucca, M. Gabriella Cusella De Angelis & P. Magni (2019). A synthetic close-loop controller circuit for the regulation of an extracellular molecule by engineered bacteria. IEEE Trans Biomed Circuits Syst. 2019 Feb; 13(1):248-258. 

https://doi.org/10.1109/TBCAS.2018.2883350


2019: Aerobical production of itaconic acid under batch conditions with the LAMBDA MINIFOR bioreactor

P. Komáromy, P. Bakonyi, A. Kucska, G. Tóth, L. Gubicza, K. Bélafi-Bakó, N. Nemestóthy. “Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate” Fermentation 2019, 5(2), 31 

https://doi.org/10.3390/fermentation5020031 


2019: Lab-Scale Production of Rhamnolipid by Pseudomonas Aeruginosa A3 using MINIFOR  Benchtop Bioreactor

Alshaikh Faqri, Ayoob & Hayder, Nadhem & Hashim, A. (2019). "Lab-scale production of Rhamnolipid by Pseudomonas Aeruginosa A3 and study its synergistic effect with certain antibiotics against some pathogenic bacteria" .

Iraqi Journal of Agricultural Sciences –2019:50(5):1290-1301(07. July 2021)


2018: A large-scale pro-siRNA production method was developed in a LAMBDA MINIFOR bioreactor for high yield production of pro-siRNA

G. Kaur, H‐C. Cheung, W. Xu, J.V. Wong, F.F. Chan, Y. Li, L. McReynolds & L. Huang. (2018). Milligram scale production of potent recombinant small interfering RNAs in Escherichia coli. Biotechnology and Bioengineering. 2018;1–12.

https://doi.org/10.1002/bit.26740


2018: MINIFOR lab scale bioreactor used for production of bioethanol from lignocellulosic biodegradable municipal solid waste (BMSW) under optimized conditions

Hayder, Nadhim H., Hussain M. Flayeh & Ali W. Ahmed. (2018). Optimization of Bioethanol Production from Biodegradable Municipal Solid Waste using Response Surface Methodology (RSM). 

Journal of Engineering and Sustainable Development Vol 22, no. 01, 2018 (07. July 2021)


2017: Comparison of the experimental and theoretical production of biogas. The MINIFOR Bioreactor filled with 2L of inoculum was incubated anaerobically at 35 C for 1 month. 

El-Asri, O. & Afilal, M. E. (2018). Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids." International Journal of Environmental Science and Technology 2018 Vol.15 No.9 pp.1957-1966 ref.40.

https://doi.org/10.1007/s13762-017-1570-1


2017: Study of the metabolism of isolated lamb’s lettuce cells (Valerianella locusta (L). Laterr.) upon sugar starvation under O2 stress conditions using 13C labeled glucose:

V. B. Mfortaw Mbong, J. Ampofo-Asiama, M. Hertog, A. Geeraerd & B. Nicolai. (2017). Metabolic profiling reveals a coordinated response of isolated lamb's (Valerianella locusta, L.) lettuce cells to sugar starvation and low oxygen stress. Postharvest Biology and Technology, Volume 126, 2017, Pages 23-33, ISSN 0925-5214. 

https://doi.org/10.1016/j.postharvbio.2016.12.004


2017: Efficient ethanol production from whey permeate (WP) and concentrated permeate (CWP) with engineered E. coli in pH-controlled bioreactor MINIFOR

Pasotti, Lorenzo, Susanna Zucca, Michela Casanova, Giuseppina Micoli, Maria Gabriella Cusella De Angelis, and Paolo Magni. (2017). Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC biotechnology 17, no. 1 (2017): 48.

https://doi.org/10.1186/s12896-017-0369-y


2017: LAMBDA MINIFOR fermenters used as continuous anaerobic flow stirred digesters (CSTR) for anaerobic digestion of organic solid waste

M. Nakasima-López, P. Taboada-González, Q. Aguilar-Virgen, N. Velázquez-Limón. (2017). Inoculum Adaptation During Start-up of Anaerobic Digestion of Organic Solid Waste. Información Tecnológica Vol. 28(1), 199-208 (2017). 

https://dx.doi.org/10.4067/S0718-07642017000100020


2017: The effect of different temperatures on sugar starvation in cells isolated from fresh leafy vegetables was studied in MINIFOR bioreactor

Mbong, Victor Baiye Mfortaw, Jerry Ampofo-Asiama, Maarten LATM Hertog, Annemie H. Geeraerd, and Bart M. Nicolai. (2017). The effect of temperature on the metabolic response of lamb’s lettuce (Valerianella locusta,(L), Laterr.) cells to sugar starvation. Postharvest Biology and Technology 125 (2017): 1-12.

https://doi.org/10.1016/j.postharvbio.2016.10.013


2017: LAMBDA MINIFOR bioreactor for the production of CB.Hep-1 mAb using mouse hybridoma cell culture in protein-free media

Valdés R, Aragón H, González M, Hernández D, Geada D, Goitizolo D et al. (2017). Mouse hybridoma cell culture in a protein-free medium using a bio-mimicking fish-tail disc stirred bioreactor. BioProcess J, 2017; 16(1): 51–64.

https://doi.org/10.12665/J161.Valdes


2016: Robust cellulosic ethanol production from sugarcane bagasse with Saccharomyces cerevisiae ATCC 20602 in LAMBDA MINIFOR laboratory bioreactor under aerobic and anaerobic conditions with controlled redox potential measurement

Jabasingh, S. Anuradha, et al. (2016). Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer. Carbohydrate polymers 136 (2016): 700-709.

https://doi.org/10.1016/j.carbpol.2015.09.098


2015: S. pyogenes Cas9 protein expressed using a 3L computer-controlled MINIFOR bioreactor in batch medium followed by exponential feeding

Ménoret, Séverine, et al. (2015). Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins. Scientific reports 5 (2015): 14410.

https://doi.org/10.1038/srep14410


2015: Fermentation of engineered microorganism in laboratory scale bioreactor MINIFOR for efficient conversion of lactose-to-ethanol

Pasotti, Lorenzo, et al. (2015). Methods for genetic optimization of biocatalysts for biofuel production from dairy waste through synthetic biology. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE, 2015.

https://doi.org/10.1109/EMBC.2015.7318521


2015: Six-species flow cell biofilm model was developed by culturing bacteria in LAMBDA MINIFOR Bioreactor to evaluate the biofilm development under flow and shear conditions

Salli, Krista M., & Arthur C. Ouwehand. (2015). The use of in vitro model systems to study dental biofilms associated with caries: a short review." Journal of oral microbiology 7 (2015). 

https://dx.doi.org/10.3402%2Fjom.v7.26149


2015: Quantification of ribosomal proteins (RPs) from Yeast cells cultured in MINIFOR bioreactor and mouse embryonic stem cells (ESC) to study the core RPs stoichiometry

Slavov, Nikolai, et al. "Differential stoichiometry among core ribosomal proteins." Cell reports 13.5 (2015): 865-873.
Harvard University, USA; Broad Institute of MIT and Harvard, USA and Hubrecht Institute, Netherlands.

https://doi.org/10.1016/j.celrep.2015.09.056

Keywords: Budding Yeast cells, Embryonic stem cells (ESC), Ribosomal Protein, RP, ribosomes, mRNA, mass-spectrometry, posttranslational modification, PTM


2014: Cultivation of microalgae (Chlorella vulgaris Beyerinck) in laboratory bioreactor MINIFOR

Heitur, Heiko. Mikrovetika Chlorella vulgaris Beyerincki kasvatamine CO2 sidumise eesmärgil. Diss. 2014.
Eesti Maaülikool (Estonian University of Life Sciences), Estonia.

Keywords: CO2, microalgae, growth rate, photobioreactor


2014: Growing yeast cultures (DBY12007) in the MINIFOR fermenter at steady state to study the aerobic glycolysis and energy flux

Slavov, Nikolai, et al. "Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis." Cell reports 7.3 (2014): 705-714.

Massachusetts Institute of Technology, USA; Harvard University, USA; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Netherlands and Princeton University, USA.

https://doi.org/10.1016/j.celrep.2014.03.057 

Keywords: Yeast, aerobic glycolysis, exponential growth, O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, stress sensitivity, respiratory quotient (RQ)


2014: Selective and non-selective batch fermentation of date extract using Saccharomyces cerevisiae (commercial strain used in bakeries (wild strain), glucose selective strains ATCC 36858 and ATCC 36859) studied in LAMBDA MINIFOR fermentor

Putra, Meilana Dharma, et al. "Selective fermentation of pitted dates by S. cerevisiae for the production of concentrated fructose syrups and ethanol." Journal of Physics: Conference Series. Vol. 495. No. 1. IOP Publishing, 2014.

King Saud University, Chemical Engineering Department, Saudi Arabia 

https://doi.org/10.1088/1742-6596/495/1/012034

Keywords: Selective, non-selective, fermentation, yeast, S. cerevisiae, fructose, ethanol, date, HPLC, kinetic profile, batch


2014: The metabolic stress response of tomato cell culture (Lycopersicum esculentum) to low oxygen studied using LAMBDA MINIFOR Bioreactor

Ampofo‐Asiama, Jerry, et al. "The metabolic response of cultured tomato cells to low oxygen stress." Plant Biology 16.3 (2014): 594-606.

KU Leuven, Belgium; Flanders Centre of Postharvest Technology (VCBT), Leuven, Belgium.

https://doi.org/10.1111/plb.12094

Keywords: 3C label; cell culture; low O2 stress; Lycopersicum esculentum; metabolome


2014: LAMBDA MINIFOR bioreactor to grow the oral bacteria (Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) under planktonic conditions

Blanc, V., et al. "Characterization and application of a flow system for in vitro multispecies oral biofilm formation." Journal of periodontal research 49.3 (2014): 323-332.

DENTAID S. L., Cerdanyola del Vallès, Spain; ETEP Research Group, University Complutense of Madrid, Spain. 

https://doi.org/10.1111/jre.12110 

Keywords: biofilm model; chlorhexidine; confocal laser scanning microscopy; oral bacteria


2013: Recombinant expression of the Met-CCL5, protease resistant CXCL12 (S4V) and F1-CX3CL1 in E. coli using MINIFOR fermenter/bioreactor to study their role in Cardiovascular disease (CVD)

Projahn, Delia, and Christian Weber. Generation, function and therapeutic application of chemotactic cytokines in cardiovascular diseases. Diss. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013

RWTH Aachen, Germany.


2013: Expression of Caf1 protein using Escherichia coli strain in MINIFOR fermentor to study mammalian cell adhesion, shape and number of focal adhesion

Machado Roque, Ana Isabel. "Protein scaffolds for cell culture." (2013).
Newcastle University, UK.


2013: LAMBDA MINIFOR Bioreactor used for recombinant protein (Chemokines) expression in E. coli

Kramp, Birgit, and Robert Ryan Koenen. Establishing the interaction between the CC chemokine ligand 5 and the receptors CCR1 and CCR. Diss. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013.

RWTH Aachen, Germany.


2013: Systems for High-Density Hybridoma Growth and High-yield mAb production in cell culture: Bench-top stirred tank bioreactors, 1-5 L (MINIFOR - LAMBDA Laboratory Instruments)

Kase, Matthew R., ed. Making and using antibodies: a practical handbook. CRC press, 2013.


2013: Controlled growth of Staphylococcus aureus under various concentrations of BAC (benzalkonium chloride) in MINIFOR fermentor

Cervinkova, Dana, et al. "The role of the qacA gene in mediating resistance to quaternary ammonium compounds." Microbial Drug Resistance 19.3 (2013): 160-167.

Veterinary Research Institute, Brno, Czech Republic.

https://doi.org/10.1089/mdr.2012.0154 

Keywords: Staphylococcus aureus, benzalkonium chloride (BAC), exponential phase, expression, real-time PCR, culture, concentration


2012: Effective production of Biobutanol from agricultural waste (giant hogweed, hay) using MINIFOR bench-top laboratory fermenter

Mezule, L., et al. "Biobutanol production from agricultural waste: A simple approach for pre-treatment and hydrolysis." Latvian Journal of Chemistry 51.4 (2012): 407-414.
Riga Technical University, Latvia 

https://doi.org/10.2478/v10161-012-0028-5 

Keywords: biofuel, biobutanol, agricultural waste, hydrolysis


2011: Bioethanol production using Yeast (S. cerevisiae) in LAMBDA MINIFOR fermenter

Burešová, Iva, and Luděk Hřivna. "Effect of wheat gluten proteins on bioethanol yield from grain." Applied Energy 88.4 (2011): 1205-1210.
Agrotest Fyto, Ltd., Kroměříž, Czech Republic; Mendel University in Brno, Czech Republic 

https://doi.org/10.1016/j.apenergy.2010.10.036 

Keywords: Bioethanol; Triticale; Wheat; Gluten; Protein


2010: Anaerobic fermentation of the glucose component in dates extract by yeast Saccharomyces cerevisiae

Gaily, Mohamed H., et al. "A Direct Process for the Production of High Fructose Syrups from Dates Extracts." International Journal of Food Engineering 6.3 (2010): 12.
King Saud University, Saudi Arabia; University of Khartoum, Sudan 

https://doi.org/10.2202/1556-3758.1879 

Keywords: dates, fructose, glucose, ethanol, fermentation, S. Cerevisiae, yeast, mesophilic, batch


2010: Study of the potential of tree tobacco stems (Nicotiana Glauca r. Grah.) as a bioethanol feedstock with the LAMBDA MINIFOR fermenter

F. Sánchez, M.D. Curt, M. Barreiro, J. Fernández, J.M. Agüera, M. Uceda, G. Zaragoza Tree tobacco (Nicotiana Glauca r. Grah.) Stems as a bioethanol feedstock (2010)

Dpt. Producción Vegetal: Botánica y Protección Vegetal. Universidad Politécnica de Madrid (UPM), Madrid, Spain

https://doi.org/10.2202/1556-3758.1879 

Keywords: bioethanol, calorific value, fermentation, fibre, nicotiana, sugar crops


2009: Determination of the alcoholigenous potential of non-cellulosic carbohydrates from prickly pear cladodes by fermentation with the yeast Saccharomyces cerevisiae (commercial strains)

Francisco Sánchez, Maria Dolores Curt, Jesús Fernández, Guillermo Zaragoza''Bioethanol Production from Prickly Pear (Opuntia ficus-indica (L) Mill.) Cladodes'' 17th European Biomass Conference & Exhibition, Hamburg (June 2009)

Dpt. Producción Vegetal: Botánica y Protección Vegetal. Universidad Politécnica de Madrid (UPM), Madrid, Spain

Keywords: bioethanol, fermentation, hydrolysis, sugar crops 


2007: Anaerobic expression using the LAMBDA MINIFOR

Park, Myong-Ok, Taeko Mizutani, and Patrik R. Jones. "Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis." Journal of bacteriology 189.20 (2007): 7281-7289.

https://org/doi/10.1128/JB.00828-07 

Research and Development Division, Fujirebio Incorporated, Japan.


2005: pH and temperature continuously recorded with the LAMBDA MINIFOR and SIAM software

Chaignon, Philippe, et al. "Photochemical reactivity of trifluoromethyl aromatic amines: the example of 3, 5-diamino-trifluoromethyl-benzene (3, 5-DABTF)." Photochemistry and photobiology 81.6 (2005): 1539-1543.

https://doi.org/10.1562/2005-08-03-RA-637 

Institut de Chimie des Substances Naturelles, C.N.R.S, France.


2003: Bioreactors - An overview of the innovations implemented in MINIFOR bioreactors

Lehky, P. 2003. Bioreactors - New Solutions for Old Problems. International Congress on Bioreactor Technology, Tampere, Finland.

Keywords: bioreactor, fermentor, cell culture, DO probe, gas flow-rate, gas station.


 

Do you sell/ship to the USA?

Yes, we do supply our instruments directly with door-to-door delivery option by the parcel services to the USA.


What is the availability of the product?

We have the instruments in stock. We would just have to configure the instruments according to your requirements and perform quality control before shipping.


Is there a warranty?

We offer a 2 year warranty for MINIFOR fermentor / bioreactor and 5 year warranty for the PRECIFLOW & MULTIFLOW peristaltic pumps.


Does this fermentor work on both mammalian cells and yeast cells?

Yes, MINIFOR fermentor and bioreactor can be used for mammalian and yeast cell cultures (More information at www.fermentor.net/applications).


Is there flexibility in the top plate to add or remove probes?

Yes, MINIFOR has free ports in the headspace for the additional probes (sensors). Multiple ports and other effective solutions in the fermentation glass vess make the MINIFOR configuration equivalent to 16 to 22 classical ports (it is possible to increase the number of ports – custom made solution)


Is the equipment suitable for use in pure / mixed culture?

Yes, MINIFOR is suitable for pure as well as mixed culture. The stirrer is strong and can easily be adapted according to the types of cultures and working volumes.


Why is MINIFOR perfectly suitable for parallel processes?

Each unit stays independent as it is equipped with a control panel and display and at a single glance shows the parameter values. All parameters are regulated locally inside each fermenter-bioreactor unit.

This allows fast and precise parameter regulation and never having to worry about leaving a vessel unattended. Further advantage is that in case there are problems with one unit, the other units will still keep running.


How important is the slowdown in parameter regulation while running 12 bioreactors in parallel?

An important aspect to consider – which, however, does not play a role in the LAMBDA MINIFOR parallel system because each MINIFOR fermenter comes with its proper regulation unit that measures and controls all parameters locally. As a consequence the quality of the measurement and regulation is not affected by long transmission times and dead times in regulation.


How much space is required for the MINIFOR unit?

Footprint: approximately a sheet of paper
Dimensions: 22 cm x 38 cm x 40 cm (W x H x D)

Módulo de pesada para cultivo continuo Mostrar detalles
Unidad de medición de potencial REDOX Mostrar detalles
LAMBDA MINI-4-GAS automatic 4-gas station for cell culture MINI-4-GAS Módulo automático de mezcla de gases Mostrar detalles
El sistema más pequeño de control anti-espuma Mostrar detalles
FNet Programa de Control de la Fermentación FNet - Programa de fermentación Mostrar detalles
Programa de fermentación Industrial SIAM Mostrar detalles
Módulo del programa del controlador de gases Mostrar detalles
LAMBDA OXÍMETRO Medición de la concentración de O2 en el gas de salida Mostrar detalles
LAMBDA CARBOXÍMETRO Medición de la concentración de CO2 en el gas de salida Mostrar detalles
LAMBDA METÁMETRO Medición de la concentración de CH4 en el gas de salida Mostrar detalles
Additional PRECIFLOW pump line PRECIFLOW pump 0-600 ml/h, reagent bottle with pipes, fittings, filter, tubing Mostrar detalles
Additional MULTIFLOW pump line MULTIFLOW pump, reagent bottle with pipes, fittings, filter and tubing Mostrar detalles