Bombas peristálticas laboratorio

Bombas peristálticas laboratorio

son el resultado de veinte años de experiencia en el laboratorio. Han sido desarrolladas para el cultivo de células en modo de operación continuo. Se les han eliminado sistemáticamente todas las imperfecciones encontradas en otras bombas peristálticas del mercado.

Bombas Peristálticas: PRECIFLOW - MULTIFLOW - HIFLOW - MAXIFLOW - MEGAFLOW

El resultado es una práctica, confiable y precisa bomba peristáltica, y a la vez es la más compacta de su tipo.

  • Caudales de 0.01 hasta 60 000 mL/hora
    Velocidad digital programable 0-999
  • Nueva tecnología de motor LAMBDA
  • Varias opciones de control remoto
  • Pulsaciones reducidas garantizan una larga vida útil de las mangueras y, por consiguiente, una mayor economía
  • Opera a bajo voltaje para mayor seguridad
  • Caudal programable (hasta 99 pasos) - con la programación manual con valor 0 la bomba puede apagarse y encenderse sin el uso de medidores de tiempo.
  • Visualización de la cinética de las reacciones mediante el INTEGRADOR del Flujo de la Bomba.
  • Set digital con tres diferentes magnitudes de potencia
  • Programa de control PNet (opcional)
  • Interfaz RS-485 o RS-232 (opcional)
  • Enchufe de bajo voltaje para máxima seguridad
  • Utilizan mangueras de bajo costo. No necesitan abrazaderas para sostener las mangueras
  • El temporizador permite apagar y encender y puede ser programado
  • La más compacta de su tipo en el mercado.

La mecánica especial de las bombas peristálticas LAMBDA nació de la necesidad de bombas que funcionarán más de ocho semanas en fermentación en modo continuo.

Los problemas más frecuentes de las bombas peristálticas convencionales son los siguientes:

  • Aspiración de los tubos o mangueras por el sistema mecánico de la bomba.
  • Ruptura de la manguera
  • Goteo de la solución a través de la manguera
  • Disminución del caudal o flujo con el tiempo
  • Interrupción del proceso continuo por cualquiera de los factores mencionados conlleva el gasto de tiempo y dinero.

Durante el desarrollo de la mecánica de las nuevas bombas peristálticas LAMBDA, todas las deficiencias de las bombas ya existentes fueron analizadas hasta encontrar, finalmente, una solución eficiente a estas fallas.

¿Por qué son tan eficientes estas nuevas bombas peristálticas?

Nuestras bombas peristálticas deben su elevada eficiencia a sus características únicas.

¿Cómo se explica esto?

  • Tres rodillos de gran diámetro que consisten de cojinetes plásticos con bolitas de vidrio (o cajas de bolas) de alto rendimiento resistentes a la corosión. Los rodillos tradicionales de diámetro pequeño ejercen presión sobre la manguera empujándola en la dirección de rotación, con lo que se hace necesario la utilización de abrazaderas, para evitar su desplazamiento. En cambio las bombas peristálticas LAMBDA utilizan ''rodillos'' de gran diámetro, esto elimina dicha presión y garantiza la inmovilización de la manguera. Una mayor porción del tubo es comprimida con una mejor distribución de la presión, protegiendo su elasticidad. A diferencia de otras bombas en el mercado, las LAMBDA utilizan cojinetes plásticos con bolitas de vidrio (o caja de bolas), en lugar de pequeños rodillos tradicionales. Su deslizamiento requiere sólo una fuerza mínima, reduce la fricción y tensión en la manguera, a la vez que son resistentes a la corrosión en caso de derrame de líquido.
  • Las palancas excéntricas con resortes de material no corrosivo mueven los ''rodillos'' generando una fuerza de compresión de forma gradual y suave, aumentando así la vida útil de la manguera y reduciendo las pulsaciones. Los resortes reducen la presión final del líquido a entre 0,1 a 0,2 MPa (según la manguera utilizada). Esta presión no aumenta incluso cuando el conducto de la manguera se ha bloqueado.
  • El diseño asimétrico del cabezal o parte superior de la bomba amplía su diámetro eficaz. El cabezal o parte superior de las bombas es grande y tiene dos centros de asimetría, lo cual reduce considerablemente la pulsación. Esta parte está hecha de epóxido, un material duro y químicamente muy estable.
  • El motor paso a paso y el BLDC (del inglés Brushless DC o motor de imanes permanentes sincrónicos) movido por una electrónica con cristal de cuarzo asegura una máxima precisión del caudal. El intervalo de control de velocidad es de 0-999.
  • Varias opciones de control remoto están disponibles.
  • El integrador de caudal LAMBDA INTEGRATOR, único en su tipo, abre nuevas posibilidades de utilización de las bombas peristálticas LAMBDA en sistemas controlados automáticamente, como en fermentación, biocultivos, síntesis química, colección de fracciones y muchos más.
  • El espacio de laboratorio es muy costoso, es así que hemos desarrollado nuestras bombas lo más compactas posible (todas tienen solo 1 L de volumen). Son, sin duda, las bombas más pequeñas y más prácticas para su uso y manipulación del mercado.

Ventajas de las bombas peristálticas LAMBDA

  • Debido a que las fuerzas laterales en los tubos han sido eliminadas, no se requiere de abrazaderas para sostener la manguera. Incluso sin ninguna fijación, la manguera no se moverá en lo absoluto del cabezal (o parte superior) de la bomba.
  • Dado que la compresión de la manguera se mantiene en el intervalo de elasticidad del esta, la vida útil de la manguera se alarga y el caudal permanece constante.
  • Para mayor economía, pueden utilizarse mangueras de bajo costo, sin comprometer la eficiencia. El costo total de la bomba se recuperará con los ahorros producidos de la utilización de 80m de manguera de bajo costo.

Todas las bombas peristálticas LAMBDA tienen las siguientes caracteristicas:

  • Control digital de la velocidad en el intervalo de 0:1000
  • El control remoto analógico ON/OFF y control de la velocidad en todo el intervalo (0–10 V)
  • Interfaz RS 485 o RS 232 (opcionales)
  • Dimensiones muy pequeñas: 10.5 (A) × 9.5 (H) × 10.5 (P) cm
  • Operación silenciosa
  • Enchufe para la corriente eléctrica de 90–240 V/AC, 50–60 Hz, salida de 12 V/DC
  • Tiempo de vida media largo incluso con tubos de bajo costo y sin abrazaderas
  • Seguridad es en conformidad con CE y IEC 1010/1

Integrador electrónico del flujo de la bomba LAMBDA INTEGRATOR

El uso del integrador electrónico de caudal LAMBDA INTEGRATOR junto con las bombas peristálticas LAMBDA permite una integración simple pero precisa de la cantidad de líquido transportado por la bomba.

Los impulsos eléctricos, que mueven el motor paso a paso son registrados y transformados en corriente directa. El voltaje puede ser medido o grabado por voltímetros comunes. La interfaz RS485 o RS 232 permite la conexión a un PC.

En procesos donde la bomba es controlada, por ejemplo por un pH-metro en una fermentación (para mantener el pH del medio constante), es importante saber cuanta base o ácido han sido adicionados en un lapso de tiempo. Esos datos brindan información importante sobre los procesos y su cinética.

El integrador puede ser también utilizado para medir la actividad enzimática (esterasas, amilasas, lactasas, etc).

El integrador puede estar conectado internamente en los controles electrónicos de la bomba y a este puede accederse solo por medio de un software. El Integrador LAMBDA permite la utilización de las bombas peristálticas en nuevas aplicaciones tales como formación gradientes, bureta electrónica, elución a contracorriente, cromatografía líquida, etc.

 

Tipo: Bomba peristáltica de laboratorio programable controlada por un microprocesador
Programación: Hasta 99 pasos de velocidad y tiempo
Resolución para el tiempo: De 0 hasta 999 minutos en pasos de 1 minuto; De 0 hasta 99.9 minutos en pasos de 0.1 minuto
Exactitud: ± 1%
Reproducibilidad: ± 0.2 % (electrónica)
Intervalo de Caudales:
PRECIFLOW & MULTIFLOW: 0.2 μl/min - 600 ml/h
HIFLOW: 1 μl/min - 3’000 ml/h
MAXIFLOW: 3 μl/min - 10’000 ml/h
MEGAFLOW: 0.02 ml/min - 60 l/h
Tubos o mangueras: Tubos de silicona y otros materiales con similar elasticidad.
Memoria no volátil: Almacena todos los valores fijados
Presión máxima:
PRECIFLOW, MULTIFLOW, HIFLOW & MAXIFLOW: aprox. 0.1 MPa en el sentido de las manecillas del reloj; aprox. 0.15 MPa en rotación contraria a las manecillas del reloj.
MEGAFLOW: aprox. 0.18 MPa en el sentido de las manecillas del reloj; aprox. 0.2 MPa en rotación contraria a las manecillas del reloj.
Motor :
PRECIFLOW & MULTIFLOW: Microprocesador controlado por un motor de pasos
HIFLOW, MAXIFLOW & MEGAFLOW: Motor de imanes permanentes sincrónicos (o magnetos de neodiminio)
Intervalo de control de velocidad: 0 - 999
Interfaz: RS-485 o RS-232 (opcional)
Control remoto: 0-10 V; (opción 0-20 o 4-20 mA); interruptor de pie; ON/OFF
Dimensiones: 10.5 (A) × 9.5 (H) × 10.5 (P) cm [PRECIFLOW, MULTIFLOW, HIFLOW & MAXIFLOW]; 18 (A) x 13 (H) x 16 (P) cm [MEGAFLOW]
Peso: <1 kg (PRECIFLOW & MULTIFLOW); 1.2 kg (HIFLOW & MAXIFLOW); 2.5 kg (MEGAFLOW)
Seguridad: cumple las normas CE y IEC 1010/1 para laboratorios
Temperatura de operación: 0 – 40 ⁰C
Humedad de operación: 0-90% HR, no condensado

2021: Polyimide‐foil‐based microfluidic mixing: LAMBDA VIT-FIT syringe pumps with 50-mL syringes (Henke-Ject) for 25 °C preheated feed. 

Bobers, J., Forys, E., Oldach, B. & Kockmann, N. (2021). Application of Polyimide-based Microfluidic Devices on Acid-catalyzed Hydrolysis of Dimethoxypropane. Chem. Ing. Tech. 2021, 93, No. 5, 796–801;
DOI: 10.1002/cite.202000224


2020: Samples (5 mL) were extracted through a PES porous hollow fiber using the LAMBDA PRECIFLOW peristaltic pump in a suspension experiment.

Schroeder, H., Duester, L., Fabricius, A.-L., Ecker, D., Breitung,V. & Ternes, T. A. (2020). Sediment water (interface) mobility of metal(loid)s and nutrients under undisturbed conditions and during resuspension. Journal of Hazardous Materials, 19/03/2020. 
DOI: 10.1016/j.jhazmat.2020.122543


2020: For the production of recombinant cytochrome in a bioreactor, the feed was pumped through a PRECIFLOW peristaltic pump controlled by the process information management system and its addition was monitored gravimetrically.

Hausjell, J., Schendl, D., Weissensteiner, J., Molitor, C., Halbwirth, H. & Spadiut, O. (2020). Recombinant production of a hard-to-express membrane-bound cytochrome P450 in different yeasts—Comparison of physiology and productivity. Yeast. 2020; 37: 217– 226;
DOI: 10.1002/yea.3441


2019: LAMBDA Peristaltic pumps were used with third-party bioreactors for precise pumping of liquids. 

Hofer, A., Kroll, P. & Herwig, C. (2019). Automated sampling and on-line analytics to increase process understanding. Securecell AG, In der Luberzen 29, CH-8902 Urdorf, Switzerland and TU Wien, Gumpendorfer Strasse 1a, A-1060 Wien, Austria.
DOI: 10.13140/RG.2.2.30419.63523


2019: The LAMBDA PRECIFLOW peristaltic pump fits the requirements for substrate feeding in shaking flasks. The pump can convey flow rates between 0.01 and 60 mL h-1.

Wagner, S.G., Mähler, C., Polte, I., von Poschinger, J., Löwe, H., Kremling, A, et al. (2019). An automated and parallelised DIY-dosing unit for individual and complex feeding profiles. Construction, validation and applications. PLoS ONE 14(6): e0217268.
DOI: 10.1371/journal.pone.0217268  


2019: The solution was collected in a new petri dish each minute, resulting in a total of eight samples. A Lambda Preciflow peristaltic pump in combination with transparent silicon tubing (inside ⌀ = 3 mm) was used to create a flow system.

Steendam, R. R. E. & Frawley, J. P. (2019). Secondary Nucleation of Sodium Chlorate: The Role of Initial Breeding. Crystal Growth & Design 2019 19 (6), 3453-3460.
DOI: 10.1021/acs.cgd.9b00317


2018: The best closed reactor was selected, and the flow and contact time operation parameters were optimized for two cycles.The flow was controlled by a MULTIFLOW peristaltic pump

García de Llasera, M.P., León Santiago, M., Loera Flores, E.J., Bernal Toris, D.N., & Covarrubias Herrera, M.R. (2018). Mini-bioreactors with immobilized microalgae for the removal of benzo(a)anthracene and benzo(a)pyrene from water. Ecological Engineering, Volume 121, 2018, Pages 89-98, ISSN 0925-8574. 
DOI: 10.1016/j.ecoleng.2017.06.059


2018: Feed, loop, bleed and harvest peristaltic pumps PRECIFLOW for continuous cultivation of extreme halophiles in customized pilot scale bioreactor

Mahler, N., Tschirren, S., Pflügl, S. & Herwig, CH. (2018). Optimized bioreactor setup for scale-up studies of extreme halophilic cultures. Biochemical Engineering Journal, Volume 130, 2018, Pages 39-46, ISSN 1369-703X.
DOI: 10.1016/j.bej.2017.11.006


2016: Turbidostat composed of two PRECIFLOW peristaltic pumps with RS-232 interface for automated optogenetic regulation of protein production in liquid Escherichia coli cultures

Milias-Argeitis, A., Rullan, M., Aoki, S. et al. (2016). Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat Commun 7, 12546.
DOI: 10.1038/ncomms12546


2016: Adaptive feeding strategy with real time signal (Lucullus) controlled feed rate of the PRECIFLOW pump in fed-batch process 

Konakovsky, V., Clemens, C., Müller, M.M., Bechmann, J., Berger, M., Schlatter, S. & Herwig, C. (2016). Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness. Bioengineering 2016, 3, 5.
DOI: 10.3390/bioengineering3010005


2015: MULTIFLOW peristaltic pump was used to evaluate the extraction of lead(II), chromium(III) and copper(II) on a novel adsorbent

Barfi, B., Rajabi, M., Zadeh, M.M. & al. (2015). Extraction of ultra-traces of lead, chromium and copper using ruthenium nanoparticles loaded on activated carbon and modified with N,N-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine. Microchim Acta 182, 1187–1196 (2015).
DOI: 10.1007/s00604-014-1434-z


2014: Digital PRECIFLOW peristaltic pumps were used as feed pump, bleed pump and cell-free harvest pump to maximize the productivity of extreme halophilic archaeon in a bioreactor equipped with an external cell retention system 

Lorantfy, B., Ruschitzka, P. & Herwig, C. (2014). Investigation of physiological limits and conditions for robust bioprocessing of an extreme halophilic archaeon using external cell retention system. Biochemical Engineering Journal, Volume 90, 2014, Pages 140-148, ISSN 1369-703X.
DOI: 10.1016/j.bej.2014.06.004


2014: For DoE experiments 1.0 mol L-1 (NH4)2CO3 was utilized as the nitrogen source and the inflow was controlled gravimetrically at designated pump set-points by PRECIFLOW peristaltic pump

Bernacchi, S., Rittmann, S., Seifert, A. H., Krajete, A. & Herwig, C. (2014). Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS Bioengineering, 2014, 1(2): 72-87.
DOI: 10.3934/bioeng.2014.2.72


2014: Feed flow rate was kept constant by controlling the speed of the PRECIFLOW peristaltic pump in continuous culture of Methanothermobacter marburgensis

Seifert, A.H., Rittmann, S. & Herwig, C. (2014). Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Applied Energy, Volume 132, 2014, Pages 155-162, ISSN 0306-2619.
DOI: 10.1016/j.apenergy.2014.07.002


2014: MULTIFLOW peristaltic pump and a polytetrafluoroethylene (PTFE) column (25 mm x 7.0 mm i.d.) were used to study the suitability of hybrid SiO2/TiO2-NH2 nanoparticles for solid phase extraction of lead, copper, and zinc from different food and water samples

Rajabi, M., Barfi, B., Asghari, A. et al. (2015). Hybrid Amine-Functionalized Titania/Silica Nanoparticles for Solid-Phase Extraction of Lead, Copper, and Zinc from Food and Water Samples: Kinetics and Equilibrium Studies. Food Anal. Methods 8, 815–824 (2015).
DOI: 10.1007/s12161-014-9964-x


2014: LAMBDA MULTIFLOW peristaltic pump used to examine the influence of eluent flow rate (1.0– 6.0 mL/min) in highly selective solid phase extraction 

Rajabi, M., Mohammadi, B., Asghari, A., Barfi, B. & Behzad, M. (2014). Nano-alumina coated with SDS and modified with salicylaldehyde-5-sulfonate for extraction of heavy metals and their determination by anodic stripping voltammetry. Journal of Industrial and Engineering Chemistry, Volume 20, Issue 5, 2014, Pages 3737-3743, ISSN 1226-086X.
DOI: 10.1016/j.jiec.2013.12.073


2014: The influent medium was pumped using PRECIFLOW pumps to the columns containing Dehalococcoides for PCE bioremediation 

Lacroix, E., Brovelli, A., Maillard, J., Rohrbach-Brandt, E., Barry, D.A. & Holliger, C. (2014). Use of silicate minerals for long-term pH control during reductive dechlorination of high tetrachloroethene concentrations in continuous flow-through columns. Science of The Total Environment, Volumes 482–483, 2014, Pages 23-35, ISSN 0048-9697.
DOI: 10.1016/j.scitotenv.2014.02.099


2014: LAMBDA MULTIFLOW Peristaltic Pump used to study the effect of flow rate on the analytes retention in range of 1.0 - 6.0 ml/min and eluent flow rate from 0.5 to 2.0 ml/min 

Rajabi, M., Mohammadi, B., Asghari, A., Barfi, B. & Behzad, M. (2014). Nano-alumina coated with SDS and modified with salicylaldehyde-5-sulfonate for extraction of heavy metals and their determination by anodic stripping voltammetry. Journal of Industrial and Engineering Chemistry, Volume 20, Issue 5, 2014, Pages 3737-3743, ISSN 1226-086X.
DOI: 10.1016/j.jiec.2013.12.073


2013: LAMBDA HIFLOW peristaltic pump with Tygon R-3603 tubing used to pump the porewater in each chamber to the surface and sampled under a high-flow Ar stream 

Yuheng, W., Frutschi, M., Suvorova, E., Phrommavanh, V., Descostes, M., Osman, A. AA., Geipel, G. & Bernier-Latmani, R. (2013). Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat Commun 4, 2942 (2013).
DOI: 10.1038/ncomms3942 


2013: LAMBDA MULTIFLOW pumped the simulated waste water containing dissolved dye through the reactor with the immobilized TiO2 to study the degradation of textile dyes 

Šíma, J. & Hasal, P. (2013). Photocatalytic Degradation of Textile Dyes in aTiO2/UV System. Chemical Engineering Transactions, 2013, 32, 79-84. Department of Chemical Engineering, Institute of Chemical Technology, Prague, Czech Republic.
www.aidic.it/cet/13/32/014.pdf (31. Mai 2021)


2013: Feed Pump: Medium was continuously supplied to the bioreactor by PRECIFLOW peristaltic pump with controlled flow to obtain the desired dilution rate (D) 

Martinez-Porqueras, E., Wechselberger, P. & Herwig, C. (2013). Effect of medium composition on biohydrogen production by the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus. International Journal of Hydrogen Energy, Volume 38, Issue 27, 2013, Pages 11756-11764, ISSN 0360-3199. 
DOI: 10.1016/j.ijhydene.2013.06.124


2013: Feed pump: In a continuous mode of culture, the medium was supplied by PRECIFLOW peristaltic pump operated on controlled set-points for designated dilution rates (D). 

Martinez-Porqueras, E., Rittmann, S. & Herwig, C. (2013). Analysis of H2 to CO2 yield and physiological key parameters of Enterobacter aerogenes and Caldicellulosiruptor saccharolyticus. International Journal of Hydrogen Energy, Volume 38, Issue 25, 2013, Pages 10245-10251, ISSN 0360-3199. 
DOI: 10.1016/j.ijhydene.2013.06.021


2013: PRECIFLOW Peristaltic Pump was used to supply feed medium into the bioreactor and the feed flow rate was kept constant by controlling the pump speed to get a medium dilution rate (D) of 0.05 per hour (h-1

Seifert, A.H., Rittmann, S., Bernacchi, S. & Herwig, C. (2013). Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresource Technology, Volume 136, 2013, Pages 747-751, ISSN 0960-8524. 
DOI: 10.1016/j.biortech.2013.03.119


2012: PRECIFLOW pump continuously supplied medium with controlled set-points for designated medium dilution rates of Methanothermobacter marburgensis grown in continuous cultures 

Rittmann, S., Seifert, A. & Herwig, C. (2012). Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass and Bioenergy, Volume 36, 2012, Pages 293-301, ISSN 0961-9534. 
DOI: 10.1016/j.biombioe.2011.10.038


2012: Ensure column saturation with upward flow by MULTIFLOW pumps 

Maya, C. C., Younga, L., Worsfolda, P. J., Heath, S., Bryan, N. D. & Keith-Roacha, M. J. (2012). The effect of EDTA on the groundwater transport of thorium through sand. Water Res. 2012 Oct 1;46(15):4870-82. Epub 2012 Jun 28. PMID: 22796006.
DOI: 10.1016/j.watres.2012.06.012


2011: Flexible polyethylene tube for PRECIFLOW feed pump used in the optimal growth of algae 

Legendre, A. & Desmazieres, N. (2011). Device for Cultivating Algae and/or Microorganisms for Treating an Effluent and Biological Frontage. United States Patent Application 20110318819.
patents.google.com/patent/EP2367926A2 (1. June 2021)


2011: LAMBDA Peristaltic pump was used to induce the milk flow into the Teflon chamber with stainless steel chips (at flow rate of 340 mL/h and 980 mL/h) to study Staphylococcus epidermidis adherence 

Jaglic, Z., Cervinkova, D., Michu, E. et al. (2011). Effect of milk temperature and flow on the adherence of Staphylococcus epidermidis to stainless steel in amounts capable of biofilm formation. Dairy Science & Technol. 91, 361–372 (2011).
DOI: 10.1007/s13594-011-0017-6


2010: LAMBDA PRECIFLOW peristaltic pump used as feed pump for glycerol during fermentation of E. coli and for producing chitin beads

Lavallaz, G. & Crelier, S. (2010). Purification de GFP avec et sans marqueur d'affinité. Diploma thesis, HES-SO Valais, Sion.
https://doc.rero.ch/record/22518 (03. June 2021) 


2009: Sample additions into the silica microbeads packed optically transparent silica capillary were performed using an RS485 LAMBDA Peristaltic Pump at a flow rate of 0.5 ml/ hour 

Scarmagnani, S., Walsh, Z., Lopez, F. B., Slater, C., Macka, M., Paull, B. & Diamond, D. (2009). Photoswitchable Stationary Phase Based on Packed Spiropyran Functionalized Silica Microbeads. e-J. Surf. Sci. Nanotech. Vol. 7 (2009) 649-652.
DOI: 10.1380/ejssnt.2009.649


2008: Two computer-controlled programmable LAMBDA HiFLOW peristaltic pumps were used for gradient generation for the purification of isolated human islets

Friberg, A.S., Ståhle, M., Brandhorst, H., Korsgren, O. & Brandhorst, D. (2008). Human islet purification utilizing a semi-closed automated pump system. Cell Transplant. 2008;17(12):1305-13. 
DOI: 10.3727/096368908787648100


2007: Injection of different samples using the Lambda MULTIFLOW peristaltic pumps 

Stjernlöf, A. (2007). Portable capillary electrophoresis system with LED-absorbance photometric and LED-induced fluorescence detection. Thesis for the degree in Master of Science, Analytical Chemistry, performed at Dublin City University 2007. 
kau.diva-portal.org/smash/get/diva2:5248/FULLTEXT01.pdf (01. June 2021)


2007: Programmed MULTIFLOW feed pump to auto-regulate oxygen consumption and temperature 

Vanags, J., Rychtera, M., Ferzik, S., Vishkins, M. & Viesturs, U. (2007). Oxygen and Temperature Control during the Cultivation of Microorganisms using Substrate Feeding. Engineering in Life Sciences, 2007, Volume 7, Issue 3, pages 247–252.
DOI: 10.1002/elsc.200620184


2007: LAMBDA PRECIFLOW feed & harvest pumps for animal cell perfusion culture with spin-filter 

Vallez-Chetreanu, F., Fraisse Ferreira, L.G., Rabe, R., von Stockar, U. & Marison, I.W. (2007). An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. Journal of Biotechnology, Volume 130, Issue 3, 2007, Pages 265-273, ISSN 0168-1656.
DOI: 10.1016/j.jbiotec.2007.04.007


2006: LAMBDA PRECIFLOW peristaltic pumps were used to feed the medium into the reactor and withdrew the perfusate from the spin–filter to study the animal cell retention 

Vallez-Chetreanu, F. (2006). Characterization of the mechanism of action of spin-filters for animal cell perfusion cultures. PhD diss. NO 3488, École Polytechnique Fédérale de Lausanne, Switzerland. 
https://infoscience.epfl.ch/record/78660/files/EPFL_TH3488.pdf (1. Juni 2021)


2003: PRECIFLOW peristaltic pump was used as a feed pump in fed-batch and continuous cultures  to maintain a constant dilution rate (D) of yeast Saccharomyces cerevisiae 

Stark, D., Zala, D., Münch, T., Sonnleitner, B., Marison, I.W. & von Stockar, U. (2003). Inhibition aspects of the bioconversion of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme and Microbial Technology, Volume 32, Issue 2, 2003, Pages 212-223, ISSN 0141-0229.
DOI: 10.1016/S0141-0229(02)00237-5


2003: PRECIFLOW Peristaltic Pump was used as a feed pump for the production of 2-phenylethanol (PEA) by in situ product removal (ISPR) method 

Stark, D., Kornmann, H., Munch, T., Sonnleitner, B., Marison, I. W. &  von Stockar, U. (2003). Novel Type of In Situ Extraction: Use of Solvent Containing Microcapsules for the Bioconversion of 2-Phenylethanol from L-Phenylalanine by Saccharomyces cerevisiae. Biotechnol Bioeng. 2003 Aug 20; 83(4):376-85.
DOI: 10.1002/bit.10679


1998: pH kept at 4 by the controlled addition of acid or base using a LAMBDA PRECIFLOW peristaltic pump to estimate the biomass production by pH control analysis 

Vicente, A., Castrillo, J. I, Teixeira, J. A. & Ugalde, U. (1998). On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems. Biotechnol Bioeng. 1998 May 20; 58(4):445-50.
DOI: 10.1002/%28SICI%291097-0290%2819980520%2958%3A4%3C445%3A%3AAID-BIT12%3E3.0.CO%3B2-A


1994: Feed pump: Concentrated nutrient solutions was fed by LAMBDA Peristaltic Pump for the production of Erythromycin from the strain Saccharopolyspora erythraea in fed-batch 

Potvin, J. & Péringer, P. (1994). Ammonium regulation in Saccharopolyspora erythraea. Part II: Regulatory effects under different nutritional conditions. Biotechnol Lett 16, 69–74 (1994). 
DOI: 10.1007/BF01022626


1995: PRECIFLOW Peristaltic Pump was used to maintain constant pH for the accurate quantitative determination of net proton production or consumption in chemostat cultures of Candida utilis 

Castrillo, J. I., De Miguel, I. & Ugalde, U. O. (1995). Proton Production and Consumption Pathways in Yeast Metabolism. A Chemostat Culture Analysis, Yeast Vol. 11: 1353-1365 (1995)
DOI: 10.1002/yea.320111404


1993: pH was maintained at 3.5 (±0.01) by LAMBDA PRECIFLOW peristaltic pump in whey chemostat culture 

Castrillo, J.I. & Ugalde, U.O. (1993). Patterns of energy metabolism and growth kinetics of Kluyveromyces marxianus in whey chemostat culture. Appl Microbiol Biotechnol 40, 386–393 (1993). 
DOI: 10.1007/BF00170398


What is the flow range?
Depending on the pump you select, our pumps offer a range of flow rates from 0.2 µl/min to 60,000 ml/hour.


Is the flow reversible?

Yes. The desired flow could achieved either by clock-wise or anticlock-wise rotation.


Could you please provide me information about the precision of dosing of a Lambda peristaltic pump? 
Accuracy of the pumps is about ±1% and the reproducibility is ±0.2% (electronics). Speed of rotation of the pump motor is regulated with a precision of quartz watch, which in-turn assures a high precision of the flow rate.


How would I calibrate the flow rate in peristaltic pumps?
The calibration of the pump flow rate with speed can be done to know the amount of the liquid pumped. It could be done in two ways: volumetric calibration of the peristaltic pump flow and pump flow calibration by weight. A short video of peristaltic pump flow calibration can be found at https://www.lambda-instruments.com/peristaltic-pumps/#video 


Can I get multi-channel pumps?
We do not manufacture multi-channel pumps. Because with the multi-channel pumps it is not possible to achieve the precise and reproducible flow rates with only one pump motor. For the high precision of flow rate, it is not advisable to use the multi-channel pumps.
If one channel gets blocked then your whole project will get spoiled totally. Instead, we recommend having individual pumps.


Why do I need to use LAMBDA individual pumps over multi-channel pump?
It has more advantages over the multi-channel pumps. The most important thing to take into account is the precise, reproducible and steady flow rate.
If one channel gets blocked then your whole project will get spoiled totally.
The bench space required for the needed channel equivalent to individual LAMBDA Pumps is same as that of a single multi-channel pump, because of the compact structure of the LAMBDA Pumps. 
The individual pumps can be used in other projects too.


Do you have pumps on stock?
Yes, we have the pumps in stock. We maintain a large stock of instruments, in order to be able to quickly set them up in the desired configuration and to dispatch them in shortest possible time, within few days!