لامبدا ایمنی دارو

لامبدا ایمنی دارو

لامبدا ایمنی داروLAMBDA DOSER پمپ منحصر به فرد برای دارو پودری برای جریان آزاد مواد جامد

  • بصورت اتوماتیک و مداوم علاوه بر جامدها و پودر ها مواد کریستال و مواد نانو و پودر های نانو استفاده میشود
    • شدت سرعت dosing از 0 تا 999
  • تولید مجدد دوز با توجه به امتیازات جریان (به عنوان مثال 50mg/min تا 50g/min برای NaCl )
  • برنامه ریزی
  • مونتاژ و تمیز کردن آسان
  • لزوم به تطابق با GLP مورد تقاضا و استاندارد های ایمنی
  • ساختمان بسیار جالب و سحر آمیز و اجازه عملکرد در کنترل اتمسفر (Ar,N2,…)
  • بررسی ایمنی از لحاظ مواد خطرناک سمی
  • ریموت کنترل
  • RS-485 کابل (اختیاری)
  • نرم افزار کنترل PNet (اختیاری )
Type: LAMBDA DOSER / HI-DOSER – microprocessor-controlled programmable powder dosing instrument
Programming: DOSER: up to 27 steps of speed and time; HI-DOSER: up to 99 steps of speed and time
Time resolution: 0 to 999 minutes in 1 minute steps or 0 to 99.9 minutes in 0.1 minute steps: time resolution can be selected individually for each program step
Motor: DOSER: microprocessor controlled stepping motor; HI-DOSER: microprocessor controlled brushless long life BLDC motor with neodymium magnets
Speed control range: 0 to 999
Interface: RS-485 (optional) or RS-232 (optional)
Power supply: DOSER: 95–240 V/50–60 Hz AC plug-in power supply with DC 12V/12W output; HI-DOSER: 95–240 V/50–60 Hz AC plug-in power supply with DC 12V/50W output; possible field operation on 12 V accumulator
Volume: Approx. 0.2 L, 1 L and 3 L glass vessels
Dimensions: DOSER motor unit: 6 (H) x 7 (W) x 13 (D) cm; HI-DOSER motor unit: 10.5 (W) x 9.5 (H) x 13 (D) cm; Glass vessel approx. 0.2 L: 30 (H) x12 (W) x 5 (D) cm; Glass vessel approx. 1 L: 30 (H) x 18 (W) x 14 (D) cm; Glass vessel approx. 3 L: 38 (H) x 21 (W) x 17.5 (D) cm
Safety: CE, meets IEC 1010/1 norm for laboratory instruments
Operation temperature: 0 - 40 °C
Operation humidity: 0-90% RH, not condensing
Remote control: 0–10 V DC (dosing speed control), 3–12 V DC (ON/OFF control); (option 0-20 or 4-20 mA)
Software: PC control software PNet (optional)

1. Copper chloride fed into the quartz reactor by LAMBDA Powder Feeder for producing carbon-coated copper nanoparticles by vapor-phase reduction

Eiroma, K.; Forsman, J.; Hult, E.-L.; Auvinen, A.; Sipiläinen-Malm, T.; Alastalo, A.; Tapper, U.; Leppäniemi, J.; Mattila, P.; Lyyränen, J.; Sarlin, J.; Jokiniemi, J.; Mössmer, S.. Water-Based Carbon-Coated Copper Nanoparticle Fluid—Formation of Conductive Layers at Low Temperature by Spin Coating and Inkjet Deposition. Journal of Imaging Science and Technology, Volume 56, Number 4, July 2012 , pp. 40501-1-40501-10(10)
Keywords: Sedimentation, deposition, copper chloride, nanoparticles, Ethylene glycol, carbon, vapour phase reduction, porous alumina, CNT

2. Continuous feeding of Copper chloride powder on alumina (Al2O3) pellet bed within a quartz glass nanoparticle reactor to develop Carbon coated copper nanoparticle Inkjet Fluid

Eiroma, Kim; Auvinen, Ari; Forsman, Johanna; Hult, Eva-Lena; Jokiniemi, Jorma; Koskela, Pirjo; Sarlin, Juha; Sipiläinen-Malm, Thea; Tapper, Unto. Development of Conductive Carbon Coated Copper Nanoparticle Inkjet Fluid. NIP & Digital Fabrication Conference, 2011 International Conference on Digital Printing Technologies. Pages 418-826. , pp. 458-461(4)
Keywords: continuous, flow reactor, copper chloride, nanoparticles, gas phase, aluminium oxide, carbon nanotubes, CNT, inkjet, spin coating

3. Timed particle additions using LAMBDA Powder DOSER to study the fabrication and evaluation of the ferroelectric reinforced metal matrix composites (FR-MMCs)

Poquette, Ben David. Understanding Ferroelastic Domain Reorientation as a Damping Mechanism in Ferroelectric Reinforced Metal Matrix Composites
Virginia Polytechnic Institute and State University in Blacksburg, Virginia
Keywords: Metal Matrix Composites, Damping, Ferroelectric, Ferroelastic, Twinning, Domain Reorientation, Electroless Plating, Electrodeposition, Electroforming, Dispersion Strengthening

4. LAMBDA Powder DOSER used as a particle feeder for Drop Tube Reactor (DTR)

Hampp F., Janajreh I., Development of a Drop Tube Reactor to Test and Assist a Sustainable Manufacturing Process. Advances in Sustainable Manufacturing, pp 141-148. 2011.
Department of Mechanical Engineering, Masdar Institute of Science and Technology, Abu Dhabi, UAE
Keywords: Gasification, Drop Tube Reactor, Sustainable Product, Development, Small Scale Experiments, Simulation Assisted Design

5. Pre-treated (over dried at 60%, moisture content 2.38%) lignocellulosic biomass feeding operation for fed-batch enzymatic hydrolysis was controlled by programmed LAMBDA powder DOSER

Chao Tai, Deepak R. Keshwani, Diego S. Voltan, Pankaj S. Kuhar, Aaron J. Engel. Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modelling, Biotechnol Bioeng. 2015 Feb 5. doi: 10.1002/bit.25552
University of Nebraska-Lincoln, USA; São Paulo State University, Brazil and CAPES Foundation, Brazil.
Keywords: Biofuels; Enzymatic hydrolysis; Epidemic model; Fed-batch; Optimal control

6. Established amounts of spherical and transparent glass particles simulating fuel droplets were introduced into the channel using Lambda powder dosing device

V. Bodoc, D. Voicu. Experimental investigation of the infrared extinction limitations for vapor concentration measurement in a gas/particle flow. 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Jul 2014, LISBONNE, Portugal.
ONERA - The French Aerospace Lab, France.
Keywords: Light Scattering; Vapor Molar Concentration; Infrared Absorption; Laser Beam

7. Dried and sieved bagasse particles were fed by the calibrated feeder (LAMBDA DOSER) into the drop-tube trickle-bed reactor

Krüsi, Michael. Heat transfer enhancement in a solar biomass gasifier. PhD diss., Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 21821, 2014.
ETH-Zürich, Switzerland.
Keywords: Alternative Energies; Biomass; Fuel Technology; Synthesis Gas

8. Feeding operation of fed-batch enzymatic hydrolysis conducted by DOSER which received timely commands from LabVIEW (fuzzy logic control system)

Tai, Chao, Diego S. Voltan, Deepak R. Keshwani, George E. Meyer, and Pankaj S. Kuhar. "Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass." Bioprocess and biosystems engineering (2016): 1-8.
University of Nebraska-Lincoln, USA and São Paulo State University, Brazil
Keywords: Fuzzy Logic Control; Cellulose Conversion Rate; Acid-pretreated Corn Stover; Pretreated Corn Stover; Batch Enzymatic Hydrolysis; Enzyme Feeding; Pretreated Biomass; High Solid Loading; Corn Stover Sample; Glucose Concentration; Glucose Release Rate

What is the lead time of Powder Doser?

We have DOSERs in stock and it can be delivered to you within a few days from order. Practically, it is only the time taken for shipping


Do you accept Credit Card payments?

You can pay using your credit card via PayPal. Most importantly, it is not necessary to have a PayPal account to make the payment via credit card.


Could you please confirm the particle size that can be fed by the dosing system?

The biggest particle size for powders that could be dosed with our DOSER is about 4 mm. A good dosing of powders depends essentially on the flowing properties of the respective powders to be dosed. In general, homogeneous and free-flowing powders can be dosed best.


How does the LAMBDA DOSER work with the substances which are prone to agglomeration?

The powder / granules / solid must be properly treated for good flowing properties It is also possible to allow a gas flow to pass through the Lambda dosing vessel in order to create a controlled atmosphere.
It is often possible to substantially improve the flowing properties of the respective powder / granules / solid by adding Aerosil (fumed silica – pure SiO2) to your powder (~0.1 - 2% by weight).


How the LAMBDA DOSER reacts to abrasive powders?

In the case of abrasive materials being used with the LAMBDA Powder DOSER, you will have an opportunity to replace the glass vessel and / or the distributors as needed.


What is the accuracy of the each dispensing?

The motor of the driving unit is controlled with quartz-driven electronics, similarly as it is done in electronic watches.Therefore, the accuracy depends mainly on the powder. For best accuracy and precise doses, the powder needs to be free-flowing and homogeneous.


Can the DOSER control the mass flow rate (g/min) of the powder being dispensed?

It is always possible to control the mass flow rate of the powder using the LAMBDA Doser. You could program the DOSER up to 27 pairs of speed and time settings to control your desired mass flow rate (g/min).


Is it possible to control the DOSER via Mettler Toledo titroprocessor to dispense NaF to the titration process when required?

Yes, the powder DOSER can be controlled by Mettler Titration Excellence T50/T70/T90 via RS-232 communication (most common type of connection with Mettler accessories), to dispense the desired amount of powder to the titration process.
The powder DOSER has to be included as RS-232 control in the titroprocessor unit and the desired activity can be selected (e.g.: the signal would switch off the DOSER or switch it on, etc.)
For integration of DOSER with your Mettler titroprocessor, you would need the RS-232 interface activated in the powder dosing unit and RS-232 connection cable.