लैम्बडा मिनीफोर

लैम्बडा मिनीफोर

नवोन्मेष से कम कीमतों पर गुणवत्तायुक्त किण्वक प्राप्त होता है। लैम्बडा मिनीफोर प्रयोगशाला किण्वन और कोशिका संवर्धन में नई अवधारणाएं प्रस्तुत करता हैः

लैम्बडा मिनीफोर बेंच-टॉप किण्वक बायो-रिएक्टर

  • सरल-जीवाणुहीनता'' अवधारणा
  • तापमान, pH, pO2 (घुलित आक्सीजन DO), वायु-प्रवाह का स्वचालित नियंत्रण
  • चूड़ीदार मुंह और फिटिंग वाली संपूर्ण नई कांच नलिकाएं प्रयोग के लचीलेपन को बढ़ा देती हैं
  • एक ही उपकरण में संवर्धन की मात्रा ३५ मिली से ६.५ लीटर तक
  • धीमे, सटीक और सस्ते संवर्धन उष्मन के लिए नया इंफ्रारेड रेडिएटर (महंगा वाटर बाथ जरूरी नहीं)
  • अत्यधिक सघन, सुगम और सभी ओर से पूर्ण पहुंच वाला
  • कोशिका संवर्धन के धीमे और प्रभावी मिश्रण के लिए नया बायोमिमिकिंग ''फिश-टेल'' विलोड़क (स्टिरर)
  • बैच, फेड-बैच और निरंतर संवर्धन प्रचालन
  • सूक्ष्म द्रव्यमान प्रवाह (मास फ्लो) मापन का प्रयोग करते हुए गैस प्रवाह नियंत्रण
  • स्वचालित फोम-रोधी नियंत्रण (वैकल्पिक)
  • बहुत शीघ्र स्थापित करना और अलग करना संभव
  • सामान्य ऑटोक्लेव्स में जीवाणुहीन करने में सक्षम
  • आधुनिक उच्च-तकनीकी वाला सामान प्रयुक्त
  • अलग से या कंप्यूटर द्वारा नियंत्रित होने वाला
  • किण्वक नियंत्रक साफ्टवेयर FNet या SIAM (वैकल्पिक)
  • समानांतर किण्वन प्रक्रियाओं के लिए भी पूर्णतः उपयुक्त
Power: Universal power supply for mains 100-245 V AC/50-60Hz, 560W, CE conform
Dimensions: 22 x 40 x 38 cm (W x D x H)
Display: LCD 4 x 40 digits with backlight illumination
Fermentor vessel: Pyrex glass with 6 to 8 side necks; 0.3, 0.4, 1, 3, 7 liter vessels
Temperature control: High efficiency 150 W infrared (IR) radiation heat source with gilded parabolic reflector
Regulation: from 5°C over RT to 70°C
Measurement: from 0 to 99.9°C in 0.1°C steps
Precision: +/- 0.2°C (0 to 60°C)
Sensor: Pt 100 incorporated in the glass electrode of the pH probe
pH control: sterilisable pH electrode pH 0-14 with automatic temperature correction, two-point semiautomatic calibration and Variopin connector
Resolution: 0.01 pH unit
Precision: +/- 0.02 pH unit
pO2 control: sterilisable Clark type oxygen sensor with fast response, automatic temperature correction, two-point semiautomatic calibration, dissolved oxygen (DO) control through regulation of the airflow rate
Range: 0 to 25 mg oxygen/ l, in 0.1 mg/l steps
Air flow: 0 to 5 l/min in 0.01 l/min steps, measured by precise mass flow meter, linearity +/- 3%, reproducibility +/- 0.5%
Control: proportional valve controlled by microprocessor
For supplied air pressure: 0.05 – 0.2 MPa (0.5 - 2 atm)
Agitation: 50 W Vibromixer 0 to 20 Hz (0 to 1200 rpm) in 0.1 Hz steps (6 rpm) with 1 or more stirring discs; Sterility similar to magnetic coupling
Selectable parameter 'X': an additional parameter can be controlled by the instrument (foaming control, weight (for continuous cultures), pCO2, redox potential, conductivity, optical density, etc.); with standard 0-10V or 0-20mA output
Ports / side necks: One large quadruple sampling or additions port with four needles with LAMBDA PEEK double-seal connections, used for sampling, inoculation, antifoam, feeds, harvest, addition of correction solutions etc., additional double ports are available.
Pumps: up to 4 independent pumps (PRECIFLOW, MULTIFLOW, HIFLOW or MAXIFLOW) with speed variation from 0 to 100 % can be used with MINIFOR lab fermenter-bioreactor
Gas flow control: In addition to pumps, several electronic flow controllers with flow rate ranges of 0-5 l/min (MASSFLOW 5000) or 0-500 ml/min (MASSFLOW 500) can be used for the controlled addition of gases (e.g. N2, O2, air, CO2) in cell cultures; freely configurable gas station module
Working temperature: 0 – 40 °C
Working humidity: 0 - 90 % RH, not condensing
Weight: 7.5 kg
PC control: complete PC control and data processing using the fermentation software FNet (for up to 6 MINIFOR fermenters) or SIAM (for an even higher number of instruments)
2023: LAMBDA MINIFOR 0.4L bioreactor for medium conditioning (37 °C, pH 7.2, constant anaerobic conditions (10% H2, 10% CO2, N2)) with weighing module and medium pumps (30 ml/h) in a dynamic in vitro biofilm model for mimicking the oral cavity environment.

Alonso-Español, A., Bravo, E., Ribeiro-Vidal, H., Virto, L., Herrera, D., Alonso, B. & Sanz, M. (2023). The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces. Int. J. Mol. Sci. 2023, 24, 2335.

2023: Itaconic acid (IA) production by continuous aerobic fungal fermentation (1.8 L, 37 °C, 0.2 vvm pure oxygen, pH naturally reduced to <2.5) in a LAMBDA MINIFOR bioreactor with native itaconic acid overporducing Aspergillus terreus NRRL 1966 using high glucose concentration (maintained at ~150 g/L) as carbon source.
Rózsenberszki, T., Komáromy, P., Hülber-Beyer, E., Pesti, A., Koók, L., Bakonyi, P., Bélafi-Bakó, K. & Nemestóthy, N. (2023). Bipolar membrane electrodialysis integration into the biotechnological production of itaconic acid: A proof-of-concept study. Chemical Engineering Research and Design, Volume 190, 2023, Pages 187-197, ISSN 0263-8762.

2023: LAMBDA MINIFOR fermenters for coculture experiments at 30 °C of Lactobacillus kefiri and Kazachstania unispora in modfied MRS media as well as in mare milk (inital: ~106 CFU·mL−1, pH = 6.8)

Kondybayev, A., Achir, N., Mestres, C., Collombel, I., Strub, C., Grabulos, J., Akhmetsadykov, N., Aubakirova, A., Kamidinkyzy, U., Ghanmi, W. & Konuspayeva, G. (2023). Growth Kinetics of Kazachstania unispora and Its Interaction with Lactic Acid Bacteria during Qymyz Production. Fermentation 2023, 9, 101.


2022: During 65 days, two continuous (HRT= 5 days) stirrer tank fermenters LAMBDA MINIFOR were operated under anaerobic conditions (N2 into headspace & sparging), each with 1 liter working volume (modification of lactate / acetate concentrations) inoculated with caproate-producing sludge (Caproiciproducens genus (Ruminococcaceae family)), temperature control (30 °C, build-in IR heater, Mettler InPro 3253 probe) and pH control (pH 5.5, NaOH 2M, HCl 0.5M) ) with four peristaltic pumps (feed, effluent, base & acid) and daily liquid sampling for carboxylates and alcohols analysis.
Brodowski, F., Lezyk, M., Gutowska, N., Kabasakal, T. & Oleskowicz-Popiel, P. (2022). Influence of lactate to acetate ratio on biological production of medium chain carboxylates via open culture fermentation. Science of The Total Environment, Volume 851, Part 1, 2022, 158171, ISSN 0048-9697.

2022: The continuous culture was performed in a Lambda Photobioreactor (PBR). White light from the Lambda LUMO module was calibrated to umolm−2 m−1. For evaporation control and continuous culture mode, the total weight of the reactor setup was kept constant using the built-in Lambda reactor mass control module and automatic addition of fresh culture medium through the feed pump. Continuous culture was performed by setting the waste pump to a fixed speed.

Anna Behle, Maximilian Dietsch, Louis Goldschmidt, Wandana Murugathas, Lutz C Berwanger, Jonas Burmester, Lun Yao, David Brandt, Tobias Busche, Jörn Kalinowski, Elton P Hudson, Oliver Ebenhöh, Ilka M Axmann, Rainer Machné, Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis, Nucleic Acids Research, Volume 50, Issue 22, 9 December 2022, Pages 12790–12808.



2022: Biocatalytic resolution of lupanine racemate in industrial wastewater by Pseudomonas putida LPK411 using a lab‐scale bioreactor LAMBDA MINIFOR 0.4L under batch operation.

Parmaki, S., Esteves, T., Gonçalves, J.M.J. Catenacci, A., Malpei, F., Ferreira, F.C., Afonso C.A.M & Koutinas, M. (2022). Selective microbial resolution of lupanine racemate: Bioprocess development and the impact of carbon catabolite repression on industrial wastewater valorisation. Biomass Conv. Bioref. (2022).


2022: LAMBDA MINIFOR fermenters with weighing modules to control the harvest pumps for the continuous anaerobic biotechnological process were used to verify how the external acetate affects the product spectrum, gas production, stability and efficiency of carboxylates production.
Brodowski, F., Lezyk, M., Gutowska & Oleskowicz-Popiel, P. (2022). Effect of external acetate on lactate-based carboxylate platform: Shifted lactate overloading limit and hydrogen co-production. Science of The Total Environment, Volume 802, 2022, 149885, ISSN 0048-9697.

2022: Escherichia coli (E. coli; E44Δ) mutant strain for production of large quantity of outer membrane vesicles (OMVs) in a LAMBDA MINIFOR 7L fermenter. 

Allahghadry, T., Bojesen, A.M., Whitehead, B.J. and Antenucci, F. (2022). Clarification of large-volume bacterial cultures using a centrifuge-free protocol. J Appl Microbiol. Accepted Author Manuscript. 


2021: Experiments on liquid phase (hemicelluloses hydrolysate) for xylitol production: The fermentation of 250 ml of detoxified hydrolysate was conducted in a 1L fermenter (Lambda minifor-bench-top-laboratory-fermenter) and pH adjustment (pH 5.0) at aerobic conditions at 30C for 60 hr. 

Shalsh, D., Dhoha Kadeem Nagimm, Muhammad Abdul Alrheem, & Saffa Abedul Alrheem. (2021). Batch fermentation and Simultaneous Saccharification and Fermentation (SSF) processes by Meyerozyma Guilliermondii Strain F22 and Saccharomyces cerecvisae for xylitol and bioethanol co-production. Al-Qadisiyah Journal of Pure Science, 26(4), 80–94.


2021: The growth, glucose consumption and ethanol production of Saccharomyces cerevisiae LM strain in synthetic broth were modeled for the most important intrinsic...One liter Lambda Minifor fermenters equipped with a cold water condenser on air exit pipes (LAMBDA Instruments GmbH, Baar- Switzerland), were used.

Christelle Kouamé, Gérard Loiseau, Joël Grabulos, Renaud Boulanger, Christian Mestres. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. International Journal of Food Microbiology, Volume 337, 2021, 108917, ISSN 0168-1605. 


2021: Continuous culture of cyanobacteria Synechocystis sp. PCC 6803 in a LAMBDA MINIFOR 1L PBR photo-bioreactor. 

Behle, A., Dietsch, M., Goldschmidt, L., Murugathas, W., Brandt, D., Busche, T., Kalinowski, J., Ebenhöh, O., Axmann, I. M. & Machné, R. (2021) Uncoupling of the Diurnal Growth Program by Artificial Genome Relaxation in Synechocystis sp. PCC 6803. bioRxiv 2021.07.26.453758.


2021: The hydrolysis of kiwicha protein isolate (KPI) is performed under continuous stirring, using a LAMBDA MINIFOR fermenter-bioreactor, at controlled conditions of pH and temperature: Bioprotease LA-660 is added at a ratio enzyme/substrate = 0.3 AU/g protein (pH 8) for 5, 10, 15, 30, and 60 min.

Paz, S.M.-d.l.; Martinez-Lopez, A.; Villanueva-Lazo, A.; Pedroche, J.; Millan, F. & Millan-Linares, M.C. (2021). Identification and Characterization of Novel Antioxidant Protein Hydrolysates from Kiwicha (Amaranthus caudatus L.). Antioxidants 10, no. 5: 645.


2021: The biological transformation of white sorghum biomass was performed under operating conditions similar to the MixAlco process. MixAlco batch fermentation process were performed in the LAMBDA MINIFOR bioreactor.

Fawzia J. Shalsh, Nagham Abdul Alrazzaq, Dhoha K. Nagimm 1, Muhammad Abdul Alrheem,  Saffa Abedul Alrheem & Kolad Abd alalah. (2021). Bioconversion of white sorghum biomass using MixAlco fermentation process. DYSONA – Applied Science. 2021(2), 21-27. ISSN 2708-6283.


2020: Different yeast strains were cultivated in the 0.4L MINIFOR Fermentor to study the metabolic cylce and pathway. 

J. Feltham, S. Xi, S. Murray, M. Wouters, J. Urdiain-Arraiza, C. George, A. Townley, E. Roberts, R. Fisher, S. Liberatori, S. Mohammed, B. Kessler & J. Mellor. (2020). Transcriptional changes are regulated by metabolic pathway dynamics but decoupled from protein levels. bioRxiv 833921.


2020: LAMBDA MINIFOR Bioreactor is used as a Rumen membrane bioreactor to produce volatile fatty acids (VFA) from crop residues (lignocellulosic biomass) by mimicking the digestive system of ruminant animals.

Nguyen, A.Q., Nguyen, L.N., Abu Hasan Johir, M., Ngo, H-H., Chaves, A.V. & Nghiem, L.D. (2020) Derivation of volatile fatty acid from crop residues digestion using a rumen membrane bioreactor: a feasibility study. Bioresource Technology 2020.


2020: Enzymatic hydrolysis experiments were carried out in the lab-scale MINIFOR stirred-batch bioreactor. The pretreated vine-shoot waste was delignified with sodium chlorite for lignin removal and then enzymatically hydrolyzed using new types of enzymes (cellulase from Trichoderma reesei and b-glucosidase).

Eniko Kovacs, Daniela Alexandra Scurtu, Lacrimioara Senila, Oana Cadar, Diana Elena Dumitras & Cecilia Roman (2020). Green Protocols for the Isolation of Carbohydrates from Vineyard Vine-Shoot Waste. Analytical Letters.


2020: MINIFOR bioreactor used to produce Itaconic Acid biotechnologically by Aspergillus terreus fungal strain from glucose

Nemestóthy, N., Komáromy, P., Bakonyi, P. et al. (2020). Carbohydrate to Itaconic Acid Conversion by Aspergillus terreus and the Evaluation of Process Monitoring Based on the Measurement of CO2 Waste and Biomass. Valorization 2020.


2019: LAMBDA MINIFOR bioreactor used in turbidostat experiments with recombinant cells in continuous culture operation mode

L. Pasotti, M. Bellato, N. Politi, M. Casanova, S. Zucca, M. Gabriella Cusella De Angelis & P. Magni (2019). A synthetic close-loop controller circuit for the regulation of an extracellular molecule by engineered bacteria. IEEE Trans Biomed Circuits Syst. 2019 Feb; 13(1):248-258. 


2019: Aerobical production of itaconic acid under batch conditions with the LAMBDA MINIFOR bioreactor

P. Komáromy, P. Bakonyi, A. Kucska, G. Tóth, L. Gubicza, K. Bélafi-Bakó, N. Nemestóthy. “Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate” Fermentation 2019, 5(2), 31 


2019: Lab-Scale Production of Rhamnolipid by Pseudomonas Aeruginosa A3 using MINIFOR  Benchtop Bioreactor

Alshaikh Faqri, Ayoob & Hayder, Nadhem & Hashim, A. (2019). "Lab-scale production of Rhamnolipid by Pseudomonas Aeruginosa A3 and study its synergistic effect with certain antibiotics against some pathogenic bacteria" .

Iraqi Journal of Agricultural Sciences –2019:50(5):1290-1301(07. July 2021)

2018: A large-scale pro-siRNA production method was developed in a LAMBDA MINIFOR bioreactor for high yield production of pro-siRNA

G. Kaur, H‐C. Cheung, W. Xu, J.V. Wong, F.F. Chan, Y. Li, L. McReynolds & L. Huang. (2018). Milligram scale production of potent recombinant small interfering RNAs in Escherichia coli. Biotechnology and Bioengineering. 2018;1–12.


2018: MINIFOR lab scale bioreactor used for production of bioethanol from lignocellulosic biodegradable municipal solid waste (BMSW) under optimized conditions

Hayder, Nadhim H., Hussain M. Flayeh & Ali W. Ahmed. (2018). Optimization of Bioethanol Production from Biodegradable Municipal Solid Waste using Response Surface Methodology (RSM). 

Journal of Engineering and Sustainable Development Vol 22, no. 01, 2018 (07. July 2021)

2017: Comparison of the experimental and theoretical production of biogas. The MINIFOR Bioreactor filled with 2L of inoculum was incubated anaerobically at 35 C for 1 month. 

El-Asri, O. & Afilal, M. E. (2018). Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids." International Journal of Environmental Science and Technology 2018 Vol.15 No.9 pp.1957-1966 ref.40.


2017: Study of the metabolism of isolated lamb’s lettuce cells (Valerianella locusta (L). Laterr.) upon sugar starvation under O2 stress conditions using 13C labeled glucose:

V. B. Mfortaw Mbong, J. Ampofo-Asiama, M. Hertog, A. Geeraerd & B. Nicolai. (2017). Metabolic profiling reveals a coordinated response of isolated lamb's (Valerianella locusta, L.) lettuce cells to sugar starvation and low oxygen stress. Postharvest Biology and Technology, Volume 126, 2017, Pages 23-33, ISSN 0925-5214. 


2017: Efficient ethanol production from whey permeate (WP) and concentrated permeate (CWP) with engineered E. coli in pH-controlled bioreactor MINIFOR

Pasotti, Lorenzo, Susanna Zucca, Michela Casanova, Giuseppina Micoli, Maria Gabriella Cusella De Angelis, and Paolo Magni. (2017). Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC biotechnology 17, no. 1 (2017): 48.


2017: LAMBDA MINIFOR fermenters used as continuous anaerobic flow stirred digesters (CSTR) for anaerobic digestion of organic solid waste

M. Nakasima-López, P. Taboada-González, Q. Aguilar-Virgen, N. Velázquez-Limón. (2017). Inoculum Adaptation During Start-up of Anaerobic Digestion of Organic Solid Waste. Información Tecnológica Vol. 28(1), 199-208 (2017). 


2017: The effect of different temperatures on sugar starvation in cells isolated from fresh leafy vegetables was studied in MINIFOR bioreactor

Mbong, Victor Baiye Mfortaw, Jerry Ampofo-Asiama, Maarten LATM Hertog, Annemie H. Geeraerd, and Bart M. Nicolai. (2017). The effect of temperature on the metabolic response of lamb’s lettuce (Valerianella locusta,(L), Laterr.) cells to sugar starvation. Postharvest Biology and Technology 125 (2017): 1-12.


2017: LAMBDA MINIFOR bioreactor for the production of CB.Hep-1 mAb using mouse hybridoma cell culture in protein-free media

Valdés R, Aragón H, González M, Hernández D, Geada D, Goitizolo D et al. (2017). Mouse hybridoma cell culture in a protein-free medium using a bio-mimicking fish-tail disc stirred bioreactor. BioProcess J, 2017; 16(1): 51–64.


2016: Robust cellulosic ethanol production from sugarcane bagasse with Saccharomyces cerevisiae ATCC 20602 in LAMBDA MINIFOR laboratory bioreactor under aerobic and anaerobic conditions with controlled redox potential measurement

Jabasingh, S. Anuradha, et al. (2016). Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer. Carbohydrate polymers 136 (2016): 700-709.


2015: S. pyogenes Cas9 protein expressed using a 3L computer-controlled MINIFOR bioreactor in batch medium followed by exponential feeding

Ménoret, Séverine, et al. (2015). Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins. Scientific reports 5 (2015): 14410.


2015: Fermentation of engineered microorganism in laboratory scale bioreactor MINIFOR for efficient conversion of lactose-to-ethanol

Pasotti, Lorenzo, et al. (2015). Methods for genetic optimization of biocatalysts for biofuel production from dairy waste through synthetic biology. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE, 2015.


2015: Six-species flow cell biofilm model was developed by culturing bacteria in LAMBDA MINIFOR Bioreactor to evaluate the biofilm development under flow and shear conditions

Salli, Krista M., & Arthur C. Ouwehand. (2015). The use of in vitro model systems to study dental biofilms associated with caries: a short review." Journal of oral microbiology 7 (2015). 


2015: Quantification of ribosomal proteins (RPs) from Yeast cells cultured in MINIFOR bioreactor and mouse embryonic stem cells (ESC) to study the core RPs stoichiometry

Slavov, Nikolai, et al. "Differential stoichiometry among core ribosomal proteins." Cell reports 13.5 (2015): 865-873.
Harvard University, USA; Broad Institute of MIT and Harvard, USA and Hubrecht Institute, Netherlands.


Keywords: Budding Yeast cells, Embryonic stem cells (ESC), Ribosomal Protein, RP, ribosomes, mRNA, mass-spectrometry, posttranslational modification, PTM

2014: Cultivation of microalgae (Chlorella vulgaris Beyerinck) in laboratory bioreactor MINIFOR

Heitur, Heiko. Mikrovetika Chlorella vulgaris Beyerincki kasvatamine CO2 sidumise eesmärgil. Diss. 2014.
Eesti Maaülikool (Estonian University of Life Sciences), Estonia.

Keywords: CO2, microalgae, growth rate, photobioreactor

2014: Growing yeast cultures (DBY12007) in the MINIFOR fermenter at steady state to study the aerobic glycolysis and energy flux

Slavov, Nikolai, et al. "Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis." Cell reports 7.3 (2014): 705-714.

Massachusetts Institute of Technology, USA; Harvard University, USA; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Netherlands and Princeton University, USA.


Keywords: Yeast, aerobic glycolysis, exponential growth, O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, stress sensitivity, respiratory quotient (RQ)

2014: Selective and non-selective batch fermentation of date extract using Saccharomyces cerevisiae (commercial strain used in bakeries (wild strain), glucose selective strains ATCC 36858 and ATCC 36859) studied in LAMBDA MINIFOR fermentor

Putra, Meilana Dharma, et al. "Selective fermentation of pitted dates by S. cerevisiae for the production of concentrated fructose syrups and ethanol." Journal of Physics: Conference Series. Vol. 495. No. 1. IOP Publishing, 2014.

King Saud University, Chemical Engineering Department, Saudi Arabia 


Keywords: Selective, non-selective, fermentation, yeast, S. cerevisiae, fructose, ethanol, date, HPLC, kinetic profile, batch

2014: The metabolic stress response of tomato cell culture (Lycopersicum esculentum) to low oxygen studied using LAMBDA MINIFOR Bioreactor

Ampofo‐Asiama, Jerry, et al. "The metabolic response of cultured tomato cells to low oxygen stress." Plant Biology 16.3 (2014): 594-606.

KU Leuven, Belgium; Flanders Centre of Postharvest Technology (VCBT), Leuven, Belgium.


Keywords: 3C label; cell culture; low O2 stress; Lycopersicum esculentum; metabolome

2014: LAMBDA MINIFOR bioreactor to grow the oral bacteria (Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) under planktonic conditions

Blanc, V., et al. "Characterization and application of a flow system for in vitro multispecies oral biofilm formation." Journal of periodontal research 49.3 (2014): 323-332.

DENTAID S. L., Cerdanyola del Vallès, Spain; ETEP Research Group, University Complutense of Madrid, Spain. 


Keywords: biofilm model; chlorhexidine; confocal laser scanning microscopy; oral bacteria

2013: Recombinant expression of the Met-CCL5, protease resistant CXCL12 (S4V) and F1-CX3CL1 in E. coli using MINIFOR fermenter/bioreactor to study their role in Cardiovascular disease (CVD)

Projahn, Delia, and Christian Weber. Generation, function and therapeutic application of chemotactic cytokines in cardiovascular diseases. Diss. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013

RWTH Aachen, Germany.

2013: Expression of Caf1 protein using Escherichia coli strain in MINIFOR fermentor to study mammalian cell adhesion, shape and number of focal adhesion

Machado Roque, Ana Isabel. "Protein scaffolds for cell culture." (2013).
Newcastle University, UK.

2013: LAMBDA MINIFOR Bioreactor used for recombinant protein (Chemokines) expression in E. coli

Kramp, Birgit, and Robert Ryan Koenen. Establishing the interaction between the CC chemokine ligand 5 and the receptors CCR1 and CCR. Diss. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013.

RWTH Aachen, Germany.

2013: Systems for High-Density Hybridoma Growth and High-yield mAb production in cell culture: Bench-top stirred tank bioreactors, 1-5 L (MINIFOR - LAMBDA Laboratory Instruments)

Kase, Matthew R., ed. Making and using antibodies: a practical handbook. CRC press, 2013.

2013: Controlled growth of Staphylococcus aureus under various concentrations of BAC (benzalkonium chloride) in MINIFOR fermentor

Cervinkova, Dana, et al. "The role of the qacA gene in mediating resistance to quaternary ammonium compounds." Microbial Drug Resistance 19.3 (2013): 160-167.

Veterinary Research Institute, Brno, Czech Republic.


Keywords: Staphylococcus aureus, benzalkonium chloride (BAC), exponential phase, expression, real-time PCR, culture, concentration

2012: Effective production of Biobutanol from agricultural waste (giant hogweed, hay) using MINIFOR bench-top laboratory fermenter

Mezule, L., et al. "Biobutanol production from agricultural waste: A simple approach for pre-treatment and hydrolysis." Latvian Journal of Chemistry 51.4 (2012): 407-414.
Riga Technical University, Latvia 


Keywords: biofuel, biobutanol, agricultural waste, hydrolysis

2011: Bioethanol production using Yeast (S. cerevisiae) in LAMBDA MINIFOR fermenter

Burešová, Iva, and Luděk Hřivna. "Effect of wheat gluten proteins on bioethanol yield from grain." Applied Energy 88.4 (2011): 1205-1210.
Agrotest Fyto, Ltd., Kroměříž, Czech Republic; Mendel University in Brno, Czech Republic 


Keywords: Bioethanol; Triticale; Wheat; Gluten; Protein

2010: Anaerobic fermentation of the glucose component in dates extract by yeast Saccharomyces cerevisiae

Gaily, Mohamed H., et al. "A Direct Process for the Production of High Fructose Syrups from Dates Extracts." International Journal of Food Engineering 6.3 (2010): 12.
King Saud University, Saudi Arabia; University of Khartoum, Sudan 


Keywords: dates, fructose, glucose, ethanol, fermentation, S. Cerevisiae, yeast, mesophilic, batch

2010: Study of the potential of tree tobacco stems (Nicotiana Glauca r. Grah.) as a bioethanol feedstock with the LAMBDA MINIFOR fermenter

F. Sánchez, M.D. Curt, M. Barreiro, J. Fernández, J.M. Agüera, M. Uceda, G. Zaragoza Tree tobacco (Nicotiana Glauca r. Grah.) Stems as a bioethanol feedstock (2010)

Dpt. Producción Vegetal: Botánica y Protección Vegetal. Universidad Politécnica de Madrid (UPM), Madrid, Spain


Keywords: bioethanol, calorific value, fermentation, fibre, nicotiana, sugar crops

2009: Determination of the alcoholigenous potential of non-cellulosic carbohydrates from prickly pear cladodes by fermentation with the yeast Saccharomyces cerevisiae (commercial strains)

Francisco Sánchez, Maria Dolores Curt, Jesús Fernández, Guillermo Zaragoza''Bioethanol Production from Prickly Pear (Opuntia ficus-indica (L) Mill.) Cladodes'' 17th European Biomass Conference & Exhibition, Hamburg (June 2009)

Dpt. Producción Vegetal: Botánica y Protección Vegetal. Universidad Politécnica de Madrid (UPM), Madrid, Spain

Keywords: bioethanol, fermentation, hydrolysis, sugar crops 

2007: Anaerobic expression using the LAMBDA MINIFOR

Park, Myong-Ok, Taeko Mizutani, and Patrik R. Jones. "Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis." Journal of bacteriology 189.20 (2007): 7281-7289.


Research and Development Division, Fujirebio Incorporated, Japan.

2005: pH and temperature continuously recorded with the LAMBDA MINIFOR and SIAM software

Chaignon, Philippe, et al. "Photochemical reactivity of trifluoromethyl aromatic amines: the example of 3, 5-diamino-trifluoromethyl-benzene (3, 5-DABTF)." Photochemistry and photobiology 81.6 (2005): 1539-1543.


Institut de Chimie des Substances Naturelles, C.N.R.S, France.

2003: Bioreactors - An overview of the innovations implemented in MINIFOR bioreactors

Lehky, P. 2003. Bioreactors - New Solutions for Old Problems. International Congress on Bioreactor Technology, Tampere, Finland.

Keywords: bioreactor, fermentor, cell culture, DO probe, gas flow-rate, gas station.


Do you sell/ship to the USA?

Yes, we do supply our instruments directly with door-to-door delivery option by the parcel services to the USA.

What is the availability of the product?

We have the instruments in stock. We would just have to configure the instruments according to your requirements and perform quality control before shipping.

Is there a warranty?

We offer a 2 year warranty for MINIFOR fermentor / bioreactor and 5 year warranty for the PRECIFLOW & MULTIFLOW peristaltic pumps.

Does this fermentor work on both mammalian cells and yeast cells?

Yes, MINIFOR fermentor and bioreactor can be used for mammalian and yeast cell cultures (More information at www.fermentor.net/applications).

Is there flexibility in the top plate to add or remove probes?

Yes, MINIFOR has free ports in the headspace for the additional probes (sensors). Multiple ports and other effective solutions in the fermentation glass vess make the MINIFOR configuration equivalent to 16 to 22 classical ports (it is possible to increase the number of ports – custom made solution)

Is the equipment suitable for use in pure / mixed culture?

Yes, MINIFOR is suitable for pure as well as mixed culture. The stirrer is strong and can easily be adapted according to the types of cultures and working volumes.

Why is MINIFOR perfectly suitable for parallel processes?

Each unit stays independent as it is equipped with a control panel and display and at a single glance shows the parameter values. All parameters are regulated locally inside each fermenter-bioreactor unit.

This allows fast and precise parameter regulation and never having to worry about leaving a vessel unattended. Further advantage is that in case there are problems with one unit, the other units will still keep running.

How important is the slowdown in parameter regulation while running 12 bioreactors in parallel?

An important aspect to consider – which, however, does not play a role in the LAMBDA MINIFOR parallel system because each MINIFOR fermenter comes with its proper regulation unit that measures and controls all parameters locally. As a consequence the quality of the measurement and regulation is not affected by long transmission times and dead times in regulation.

How much space is required for the MINIFOR unit?

Footprint: approximately a sheet of paper
Dimensions: 22 cm x 38 cm x 40 cm (W x H x D)

Scale module for continuous cultures विवरण दिखाएं
REDOX potential measurement [mV] विवरण दिखाएं
LAMBDA MINI-4-GAS automatic 4-gas station for cell culture MINI-4-GAS Automatic gas-mix विवरण दिखाएं
Automatic antifoam control विवरण दिखाएं
FNet Programa de Control de la Fermentación FNet - Fermentor Control Software विवरण दिखाएं
SIAM industrial fermentation software विवरण दिखाएं
MINI-4-GAS software module विवरण दिखाएं
OXYMETER O2 concentration measurement (0-25%) विवरण दिखाएं
CARBOMETER CO2 concentration measurement (0-100%) विवरण दिखाएं
METHAMETER CH4 concentration measurement (0-100%) विवरण दिखाएं
Additional PRECIFLOW pump line PRECIFLOW pump 0-600 ml/h, reagent bottle with pipes, fittings, filter, tubing विवरण दिखाएं
Additional MULTIFLOW pump line MULTIFLOW pump, reagent bottle with pipes, fittings, filter and tubing विवरण दिखाएं